name
Bredikhin Boris Andreyevich
Scholastic degree
•
Academic rank
professor
Honorary rank
—
Organization, job position
• Kuban State Agrarian University
кафедра сопротивления материалов
профессор
Research interests

Web site url
—
Current rating (overall rating of articles)
0
TOP5 coauthors
Articles count: 3
Сформировать список работ, опубликованных в Научном журнале КубГАУ

COMBINATORY METHOD OF NUMBERS′ FACTORIZATION
01.00.00 Physicalmathematical sciences
DescriptionProblem having elementary formulation makes us look for its easier solution. So the combinatorial method of positive integer’s factorization is an attempt to do it. The combinatory method possesses simple algorithm, leading immediately to finding out all the factorizations and identification of all prime numbers on any interval of the positive integers. Prime numbers don’t carry any information except their own magnitude. Composite numbers, possessing divisibility properties provide possibility to discover the law of their distribution. The achievement of this purpose also completely solves the problem of finding out the law of prime numbers’ distribution

THE ASSESSMENT OF COMPLEXITY OF COMBINATORY METHOD OF NUMBERS’ FACTORIZATION
01.00.00 Physicalmathematical sciences
DescriptionThis article is devoted to the assessment of the calculating complexity of combinatory method of numbers’ factorization. The content of combinatory method is explained in the article of the same name published in the journal issued in November 2016. The author supposes that the reader has learnt its content and knows the basic notions of theory of calculating complexity of the algorithms. The following results of the learning of the given task are expounded in this article. The algorithm of combinatory method permits to accomplish the parallel calculations. Graph of any order is the separate structure, because its initial data are determined independently from the other graphs. So, the calculating complexity of the task about the factorization of numbers in the predetermined interval of the positive integers is defined by the complexity of the most laborious graph. The analysis of the graphs’ structure allows to state that it’s the graph of the third order. In any graph both branches of the first level give the separate structures partitive graphs of the first level with independent input data. So, the calculating complexity of the graph complete is determined by the maximal complexity of the graph of the first level. The givenat random interval of positive integers stays without changes, if we observe the sequence of the adjacent intervals. In the results it’s stated that the assessment of complexity of combinatory method as well other present methods of numbers’factorization is exponential. In this aspect the combinatory method doesn’t compete with other actual methods. However, evaluating the scientific significance of the algorithm, the decisive factor is not the calculating complexity, but its originality, which permits to explain (if not to discover) any properties of the positive integers. In the conclusion of the article the author describes the advantages of combinatory method, permitting to appreciate the degree of its scientific novelty