name
Pismenskiy Alexander Vladimirovich
Scholastic degree
•
Academic rank
associated professor
Honorary rank
—
Organization, job position
Research interests
Web site url
—
—
Current rating (overall rating of articles)
0
TOP5 coauthors
Articles count: 6
Сформировать список работ, опубликованных в Научном журнале КубГАУ

01.00.00 Physicalmathematical sciences
DescriptionThere is a 2D mathematical model of ion transport binary salt with the main conjugate effects of concentration polarization in the overlimiting current mode: the bulk charge and the dissociation/ recombination of water, gravity and electroconvection and Joule heating the solution in the form of a boundary value problem for systems of differential equations with partial derivatives in the article. This system is presented in a form convenient for numerical solution. We describe the necessary boundary conditions. This article presents a theoretical study of the interaction of forced, gravitational and electroconvection, the dissociation / recombination of water molecules, and Joule heating of the solution and heat transport through membranes. We have constructed a mathematical model of twodimensional nonstationary ion transport binary salt in a smooth rectangular channel desalting electrodialysis device using equations NernstPlanckPoisson, heat conduction and NavierStokes equations and the natural boundary conditions. For numerical solution we use the finite element method, with the splitting of task at each new time layer into three subtasks: electrochemical, thermal conductivity, hydrodynamic. Such approach to the development of numerical methods is the original and can solve arising in modeling boundaryvalue problems for a nonlinear system of partial differential equations

01.00.00 Physicalmathematical sciences
DescriptionThe influence of dissociation / recombination of water molecules is important for understanding electroconvection processes, as some authors believe that the emergence of new carriers + H and − OH , and can lead to a reduction in the spacecharge and, consequently, to electroconvection disappearance. However, as shown in [5], the dissociation of water molecules, although it reduces the space charge and increases the threshold fall potential jump at which begins electroconvection, yet it persists and effectively mixes the solution. This article is devoted to mathematical modeling of electrodiffusion of four types of ions at the same time (two salt ions as well as + H and − OH ions) in the diffusion layer in electromembrane systems with perfectly selective membrane under the joint influence of violation of electrical neutrality, and the reaction of dissociation / recombination of water molecules, development of mathematical models of these processes, building efficient algorithms asymptotic and numerical analysis for different types of electrolytes. The work proposes a new mathematical model of the process of transfer of salt ions in view of the space charge and the dissociation / recombination of water in the form of a boundary value problem for a system of ordinary differential equations. This system is reduced to a form convenient for numerical solution. We have calculated the required additional boundary conditions for the electric field. Numerical and asymptotic solution of the boundary value problem and physicochemical analysis of the influence of dissociation / recombination on the transfer of salt ions is expected to devote the next part of the work

01.00.00 Physicalmathematical sciences
DescriptionThis article is a continuation of the previous works of the authors [The influence of reaction dissociation / recombination of molecules of water on transportation of electrolyte 1:1 in the membrane systems in the diffusion layer. Part 1. Mathematical model // Scientific journal of Kuban State Agrarian University, 2016. No. 07(121) and The influence of the reaction of dissociation / recombination of molecules of water on transportation of electrolyte 1: 1 in membrane systems in the diffusion layer. Part 2. Asymptotic analysis // Scientific journal of Kuban State Agrarian University, 2016. – №08(122)] and devoted to assessing the possibility of gravitational convection due to the recombination of hydrogen and hydroxyl ions. The article presents the solution of a boundaryvalue problem, which is a mathematical model of electrodiffusion for the four types of ions at the same time (two ions of salts and hydrogen and hydroxyl ions) in the diffusion layer in electromembrane systems with ideal selective membrane, with the heat transfer equation and the NavierStokes equation. The article shows the possibility of the emergence of gravitational convection due to the exothermic reaction of recombination of water molecules in the depth of the solution. The article considered the reaction of recombination of hydrogen ions and hydroxyl, although the main results can be applied, after appropriate modifications, and to amfolitcontaining solutions, such as wine, juices, dairy products, microbiological processing of biomass (amino acids, anions of polybasic carboxylic acids), municipal effluent (anions of phosphoric acid), etc.

01.00.00 Physicalmathematical sciences
DescriptionThis article is devoted to the asymptotic analysis of boundary value problem for a system of equations of NernstPlanck and Poisson for a singularly perturbed system of ordinary differential equations [1], based on two parameters. This boundary value problem simulates electrodiffusion of four kinds of ions at the same time in the diffusion layer in electromembrane systems with perfectly selective membrane, taling into consideration the reaction of recombination of two ions. Meanwhile the other two ions represent ions of a binary salt. As a simple example, we consider the transport of ions sodium, chlorine, hydrogen and hydroxide, moreover, hydrogen and hydroxyl ions recombine in the diffusion layer. A more complex case is the transfer of the products of dissociation of the dihydrogen phosphate of sodium, namely, ions of sodium and dihydrogen phosphate, the latter dissociate at the interface, in turn, hydrogen ions and hydrogen phosphate. Thus, in the solution can simultaneously store three different types of ions: sodium, hydrogen, phosphate. During the transfer, hydrogen ions and ions of hydrogen phosphate recombine to produce phosphoric acid. The article has revealed the structure of the Nernst diffusion layer at currents above Harkatsa current. It is shown, that in the diffusion layer, there are two types of boundary layers: the inner (reaction) boundary layer and boundary layer at the interface solution / membrane

01.00.00 Physicalmathematical sciences
DescriptionAn analysis of the experimental data obtained by the authors, as well as reference books, allowed to hypothesize about the essential role of gravitational convection in electromembrane systems with ampholytes even in underlimiting current regimes. The article is devoted to the development of the mathematical model of ion transport in a flow elecrtomembrane system during electrodialysis of ampholytecontaining solutions with taking into account a possible appearance of gravitational convection, in particular, due to nonisothermal protonation–deprotonation reactions of ampholytes. The article presents the boundary value problem that is the new mathematical model for diffusion, convection and electromigration of four components of the solution (ions of sodium, dihydrogen phosphate and hydrogen, as well as molecules of orthophosphoric acid) in a half of an electrodialysis desalination channel, adjacent to an anionexchange membrane. The membrane is considered as ideally selective and homogeneous. The system of partial differential equations, that is the base of the model, also includes equations of NavierStokes, material balance, convective heat conduction and the electroneutrality condition. The system of equations is supplemented by a number of natural and original boundary conditions. A distinctive feature of this study is the absence of assumptions about the equilibrium of chemical reactions in a diffusion layer. The results of the study can be used for the development of environmentally rational and resource saving membrane technologies for a processing of products of agroindustrial complex

01.00.00 Physicalmathematical sciences
DescriptionIn the article, we have suggested a general mathematical model of nonstationary and nonisothermal process of a binary electrolyte transfer in dilute solutions in an electromembrane system (EMS), taking into account the joint action of gravitational convection, forced convection and electro convection in potential dynamic mode. This model is a boundary problem for a system of twodimensional quasilinear NavierStokes equation and NernstPlanckPoisson in partial derivatives equation. We have developed a theory of similarity of the process of heat and mass transfer in electromembrane systems, specifically, in a desalting channel of electro dialysis apparatus, taking into account joint actions of concentration polarization, space charge, gravity convection, forced convection and electro convection. It is shown that the criterion of electro convection does not directly depend on the initial concentration, and, therefore, electro convection occurs at any initial concentration. At the same time, the criterion of concentration convection linearly dependents on the initial concentration, and, therefore, at high concentrations, concentration convection prevails, while at lower concentrations, the role of gravitational convection begins to fall whereas the role of electro convection increases. The theory of similarity of the process of heat and mass transfer in the desalting channel of electro dialysis apparatus built in this work taking into account the joint action of concentration polarization, space charge, gravity convection, forced convection and electro convection is important for engineering calculations, for scaling the results of experiments in an electromembrane cell for industrial electro dialysis water desalting apparatus