A&E Trounev IT Consulting, Toronto, Canada
Author list of organization
List of articles written by the authors of the organization
-
GRAVITY FIELD IN THE VICINITY OF STARS AND GEOMETRIC TURBULENCE
01.00.00 Physical-mathematical sciences
Description
In this article, the solutions of Einstein's equations for empty space, describing the gravitational field near the Sunlike star have been investigated. We have accounted the own field of the star, the motion of the star around the galactic center, the motion of the galaxy relative to the center of the local supercluster and the expansion of the Universe. The resulting gravitational field near the star has a complex structure, which leads to large-scale geometric turbulence linking large and small scales in this problem
-
GRAVITATIONAL WAVES IN THE RICCI FLOW FROM SINGULARITIES MERGER
01.00.00 Physical-mathematical sciences
Description
In this study, we investigate the problem of the emission of gravitational waves produced in collisions of particles submitted to the singularities of the gravitational field. A system of non-linear parabolic equations describing the evolution of the axially symmetric metrics in the Ricci flow derived. A model describing the emission of gravitational waves in the collision and merger of the particles in the Ricci flow proposed. It is shown that the theory of the Ricci flow describes the problem of black holes merge, consistent with Einstein-Infeld theory, which describes the dynamics of the material particles provided by the singularities of the gravitational field. As an example, we consider the metric having axial symmetry and comprising two singularities simulating particles of finite mass. We have numerically investigated the change of the metric in the collision and merger of the particles. The initial and boundary conditions using the exact solution of the static problem, so the collision persist particularly metrics caused by the presence of particles. In numerical experiments determined that the collision of the particles in the Ricci flow leads to the formation of gravitational waves, similar in structure to the waves, registered in the LIGO experiment. Consequently, we can assume that the observed gravity waves caused mainly by transients associated with the change in the metric of a system. The influence of the parameters of the problem - the speed and mass of the particles, on the amplitude and intensity of the emission of gravitational waves was numerically simulated. We have found chaotic behavior of gravitational potentials at the merger of the singularities in the Ricci flow
-
GRAVITATIONAL WAVES AND QUANTUM THEORY
01.00.00 Physical-mathematical sciences
Description
In this article we consider gravitation theory in multidimensional space. The model of the metric satisfying the basic requirements of quantum theory is proposed. It is shown that gravitational waves are described by the Liouville equation. Schrödinger conjecture about the Schrödinger wave function and gravitational waves has been proved
-
GRAVITATIONAL WAVES AND SCHRODINGER QUANTUM THEORY
01.00.00 Physical-mathematical sciences
Description
In this paper, we consider gravitation theory in multidimensional space. The model of the metric satisfying the basic requirements of quantum theory is proposed. It is shown that gravitational waves are described by the Liouville equation. Conjecture about the Schrödinger wave function due to gravitational waves was proved. Solutions of the gravitational field equations similar to the de Broglie waves have been constructed.
-
GRAVITATIONAL WAVES AND EMERGENCE PARAMETER OF CLASSICAL AND QUANTUM SYSTEMS
01.00.00 Physical-mathematical sciences
Description
It was established that the Fermi-Dirac statistics, Bose-Einstein and Maxwell-Boltzmann distribution can be described by a single equation, which follows from Einstein's equations for systems with central symmetry. Emergence parameter of classical and quantum systems composed by the rays of gravitational waves interacting with gravitational field of the universe has been computed
-
GRAVITATIONAL WAVES AND STATIONARY STATES OF QUANTUM AND CLASSICAL SYSTEMS
01.00.00 Physical-mathematical sciences
Description
In this paper, we consider gravitation theory in multidimensional space. The model of the metric satisfying the basic requirements of quantum theory is proposed. It is shown that gravitational waves are described by the Liouville equation and the Schrodinger equation as well. The solutions of the Einstein equations describing the stationary states of arbitrary quantum and classical systems with central symmetry have been obtained. Thus, it is proved that atoms and atomic nuclei can be represented as standing gravitational waves
-
DYNAMICS OF THE GEOMAGNETIC FIELD AND REVERSALS IN THE SATELLITE MODEL
01.00.00 Physical-mathematical sciences
Description
The article deals with the problem of changing the polarity of the geomagnetic field in the satellite model. It is assumed that the central core of the earth magnetized and surrounded by a number of satellites, each of which has a magnetic moment. Satellites interact with a central core and one another by means of gravity and through a magnetic field. It is shown that satellites distributed in orbit around a central core in such a system. It displays two models, one of which on the outer orbit satellites interact with each other and with a central body - the core and satellites, located on the inner orbit. The central body can make sudden upheavals in the fall at the core of one or more satellites, which leads to the excitation of vibrations in the satellite system, located on the outer orbit. It is shown that the duration of phase with constant polarity and upheaval time depends on the magnitude of the disturbance torque and core asymmetry. The second model contains two magnets subsystems and the central core. The rapid change of the geomagnetic field polarity detected on the basis of paleomagnetic data is modeled based on the Euler theory describing the rigid body rotation. In this model, there are modes with a quick flip of the body while maintaining the angular momentum. If the body has a magnetic moment, when there is a change coup magnetic field polarity. This leads to the excitation of vibrations in the satellite subsystems that are on the inner and outer orbits. Numerical simulation of the dynamics of the system consisting of the core and 10-13 satellites was run to determine the period of constant polarity magnetic field
-
DYNAMICS OF THE GEOMAGNETIC FIELD AND SUPERGRAVITY IN 112D
01.00.00 Physical-mathematical sciences
Description
The paper deals with the problem of changing the polarity of the geomagnetic field as a problem of a unified field theory and supergravity in the 112D. Investigated centrally symmetric metric depends on the radial coordinate in the observable physical space of one of the worlds. The equation that relates the magnetic field of the planet with a gravitational field in 5D has been derived. The problem of changing the polarity of the magnetic field of the Earth discussed. The rapid change of the geomagnetic field polarity detected on the basis of paleomagnetic data is modeled as a movement on a hypersphere in the 112D, which corresponds to 110 corners. The simplest example of such a movement in the case of the three angles is the Euler model that describes the rigid body rotation. In this model, there are modes with a quick flip of the body while conservation of the angular momentum. If the body has a magnetic moment, when such a change occurs flip of the magnetic field. It is assumed that the central core of the earth is magnetized and surrounded by a number of satellites, each of which has a magnetic moment. Satellites interact with a central core and one another by means of gravity and through a magnetic field. The central core may sudden flip, as in the Euler model. It is shown that the duration of phase with constant polarity and upheaval time depends on the magnitude of the disturbance torque and core asymmetry. We discuss Einstein's hypothesis about the origin of the magnetic field when rotating the neutral masses. It is shown that the motion on a hypersphere in the 112D has the effect of a magnetic field due to the interaction of nucleons in nuclei. Such magnetic field is most evident for iron, cobalt and nickel - elements are consisting of the Earth's core
-
QUARK DYNAMICS IN ATOMIC NUCLEI AND QUARK SHELLS
01.00.00 Physical-mathematical sciences
Description
In this paper we consider a system of Dirac equations describing the dynamics of quarks in the metric of the atomic nuclei. We found out, that the binding energy of the nucleons for all known nuclides depends on the content of the quarks. The resulting dependence of the energy of the nucleons shows a quark shells, similar to electron shells. Our basic assumption is that each nucleon in the nucleus loses its individuality by dissociation to individual quarks that form quark shells. These shells are filled sequentially, just as filled electron shells. Since the nucleons are composed of two types of quarks, there are two types of shells that are filled with u and d quarks, respectively. In this case, the binding energy per nucleon depends on the concentration of quarks in the shells and the energy of the interaction of quarks.
-
QUARK DYNAMICS IN ATOMIC NUCLEI AND QUARK SHELLS
01.00.00 Physical-mathematical sciences
Description
In this article, we consider a system of Dirac equations describing the dynamics of quarks in the metric of the atomic nuclei. We found out, that the binding energy of the nucleons for all known nuclides depends on the content of the quarks. The resulting dependence of the energy of the nucleons shows a quark shells, similar electron shells