
Ф.И.О.
Орлов Александр Иванович
Ученая степень
• кандидат физико-математических наук
• доктор технических наук
• доктор экономических наук
Ученое звание
профессор
Почетное звание
—
Организация, должность
• Московский государственный технический университет им. Н.Э. Баумана
Научные интересы
статистические методы, организационно-экономическое моделирование. Разработал новую область прикладной статистики — статистику объектов нечисловой природы
Адрес веб-сайта
—
Электропочта
Текущий рейтинг (суммарный рейтинг статей)
0
TOP5 соавторов
Статей в журнале: 152 шт
Сформировать список работ, опубликованных в Научном журнале КубГАУ
-
Краткое описание
Проанализированы основные идеи неформальной информационной экономики будущего (НИЭБ). Обосновано ее использование в качестве базовой организационно-экономической теории взамен «экономикс». Стержнем исследований в области НИЭБ является прогнозирование развития будущего общества и его экономики, разработка необходимых для будущего организационно-экономических методов и моделей, предназначенных для повышения эффективности процессов управления. Экономика - это наука о том, как про-изводить, а не о том, как делить прибыль. Основное ядро современной экономической теории - это экономика предприятия
-
Проблемы внедрения математических и инструментальных методов контроллинга
01.00.00 Физико-математические науки
Краткое описание
Статистические методы опираются на развитую теорию и продемонстрировали свою полезность в отраслях народного хозяйства. Однако анализ положения дел в области применения статистических методов показывает явное неблагополучие, в результате которого накопленный в нашей стране научный потенциал используется далеко не в полной мере. Как показывает практика, мало разработать перспективные современные научно обоснованные эффективные математические и инструментальные методы контроллинга. Чтобы эти методы использовались, необходимо, чтобы они были внедрены. Управление внедрением новшеств, т.е. инновационный менеджмент, вполне обоснованно является в настоящее время одним из наиболее обсуждаемых разделов экономики и организации производства, всей экономической науки в целом. Однако внедрение прикладной статистики и других статистических методов, более широко, математических и инструментальных методов контроллинга, имеет свою специфику. Она рассмотрена в статье. Выделены болезни роста - низкий научный уровень многих лиц, применяющих статистические методы, отсутствие организационной структуры прикладной статистики как области прикладной деятельности и др. С сожалением приходится констатировать, что как сама идея необходимости установления требований к методам анализа данных, так и проект с формулировками таких требований остались вне внимания тех специалистов, которым они необходимы и были адресованы. Отсутствует система методические документы по конкретным статистическим методам, выполненных на современном научном уровне. По мнению автора, желательное будущее прикладной статистики состоит в ее реорганизации по образцу метрологии. Проанализировано применение статистических методов как специальность. Дан анализ системы государственных стандартов по статистическим методам и причинам появления в них грубых ошибок. Обсуждается статус документов по статистическим методам стандартизации и управления качеством продукции. Рассмотрена новая система «Шесть сигм» внедрения перспективных математических и инструментальных методов контроллинга
-
08.00.13 Математические и инструментальные методы экономики (экономические науки)
Краткое описание
К инструментальным методам экономики относится метод Монте-Карло (метод статистических испытаний). Он широко используется при разработке, изучении и применении математических методов исследования в эконометрике, прикладной статистике, организационно-экономическом моделировании, при разработке и принятии управленческих решений, является основой имитационного моделирования. Разработанная нами новая парадигма математических методов исследования опирается на применение метода Монте-Карло. В математической статистике для многих метолов анализа данных получены предельные теоремы об асимптотическом поведении рассматриваемых величин при безграничном росте объемов выборок. Следующий шаг - изучение свойств этих величин при конечных объемах выборок. Для такого изучения применяют метод Монте-Карло. В настоящей статье этот метод применяем для изучения свойств статистических критериев проверки однородности двух независимых выборок. Рассмотрены наиболее используемые при анализе реальных данных критерии - Крамера-Уэлча, совпадающий при равенстве объемов выборок с критерием Стьюдента; Лорда, Вилкоксона (Манна-Уитни), Вольфовица, Ван-дер-Вардена, Смирнова, типа омега-квадрат (Лемана-Розенблатта). Метод Монте-Карло позволяет оценить скорости сходимости распределений статистик критериев к пределам, сравнить свойства критериев при конечных объемах выборок. Для применения метода Монте-Карло необходимо выбрать функции распределения элементов двух выборок. Для этого использованы нормальные распределения и распределения Вейбулла - Гнеденко. Получена рекомендация: для проверки гипотезы совпадения функций распределения двух выборок целесообразно использовать критерий Лемана - Розенблатта типа омега-квадрат. Если есть основания предполагать, что распределения отличаются в основном сдвигом, то можно использовать также критерии Вилкоксона и Ван-дер-Вардена. Однако даже в этом случае критерий типа омега-квадрат может оказаться более мощным. В общем случае, кроме критерия Лемана - Розенблатта, допустимо применение критерия Смирнова, хотя для этого критерия реальный уровень значимости может значительно отличаться от номинального. Оценены частоты расхождений статистических выводов по разным критериям
-
Прикладная статистика - состояние и перспективы
01.00.00 Физико-математические науки
Краткое описание
Прикладная статистика - наука о том, как обрабатывать статистические данные. Как самостоятельная научно-практическая область она развивается весьма быстро. В ее состав входят многочисленные широко и глубоко развитые научные направления. Те, кто применяет прикладную статистику и другие статистические методы, обычно ориентированы на конкретные области исследования, т.е. не являются специалистами по прикладной статистике. Поэтому представляется полезным провести критический анализ современного состояния прикладной статистики и обсудить тенденции развития статистических методов. Большая практическая значимость прикладной статистики оправдывает целесообразность проведения работ по развитию ее методологии, в которых эта область научной и прикладной деятельности рассматривалась бы как целое. Дана краткая информация об истории прикладной статистики. На основе наукометрии прикладной статистики констатируем, что каждый специалист владеет лишь небольшой частью накопленных в этой области знаний. Обсуждаются пять актуальных направлений, в которых развивается современная прикладная статистика, т.е. пять "точек роста": непараметрика, робастность, бутстреп, статистика интервальных данных, нечисловая статистика. Подробнее рассмотрены основные идеи нечисловой статистики. В течение последних более чем 60 лет в России наблюдается огромный разрыв между государственной статистикой и научным сообществом специалистов по статистическим методам
-
Предельные теоремы для ядерных оценок плотности в пространствах произвольной природы
01.00.00 Физико-математические науки
Краткое описание
Оценки плотности распределения вероятностей в пространствах произвольной природы используют для решения различных задач нечисловой статистики. Систематическое изложение теории таких оценок начато в нашей статье [2], непосредственным продолжением которой является настоящая статья. Регулярно используются ссылки на условия и утверждения из статьи [2], в которой введено несколько видов непараметрических оценок плотности вероятности по выборке. Подробнее изучены линейные оценки. В настоящей статье рассмотрим их частные случаи – ядерные оценки плотности в пространствах произвольной природы. При оценивании плотности числовой случайной величины ядерные оценки переходят в оценки Парзена-Розенблатта. Асимптотическому поведению ядерных оценок плотности в общем случае пространствах произвольной природы посвящены теоремы 1 - 8. При различных условиях доказана состоятельность и асимптотическая нормальность ядерных оценок плотности. Изучена равномерная сходимость. Введено понятие "предпочтительный показатель различия" и изучены ядерные оценки плотности на его основе. Введены и изучены естественные меры близости, используемые при анализе асимптотического поведения ядерных оценок плотности. Найдена асимптотика дисперсий ядерных оценок плотности. Рассмотрены примеры, в том числе в конечномерных пространствах и в пространстве интегрируемых с квадратом функций
-
Предельные теоремы в статистическом контроле
01.00.00 Физико-математические науки
Краткое описание
Проанализировано развитие теории статистического контроля (от XVIII в. до наших дней). М.В. Остроградский (1846) четко описывает потребности практики (а именно, возникающие при проверке качества больших партий мешков муки или штук сукна), для удовлетворения которых он провел свое исследование. В то же время Симпсон остался в кругу идей теории вероятностей XVIII в. Поэтому М.В. Остроградского следует считать основоположником теории статистического контроля (не только в нашей стране, но и во всем мире). Предельные теоремы теории вероятностей и математической статистики позволили получить ряд асимптотических результатов в задачах статистического контроля качества, предложить основанные на них практические рекомендации. Однако необходимо выяснить, насколько интересующие специалистов характеристики отличаются от предельных при конечных объемах выборок. Для алгоритма синтеза плана контроля на основе предела среднего выходного уровня дефектности это сделано в настоящей статье, а для алгоритма синтеза плана контроля на основе приемочного и браковочного уровней дефектности - пока нет (выяснение условий применимости этого алгоритма - нерешенная задача прикладной математики). Кратко рассмотрено развитие наших исследований по статистическому контролю. Единицами контроля могут быть не только единицы продукции, но и документы (при внутреннем и внешнем аудите), и условные единицы воздуха, воды, почвы при экологическом мониторинге. Одним из достижений можно считать перенос методов статистического контроля продукции на экологический мониторинг
-
Предельная теория решений экстремальных статистических задач
01.00.00 Физико-математические науки
Краткое описание
Многие процедуры прикладной математической статистики основаны на решении экстремальных задач. В качестве примеров достаточно назвать методы наименьших квадратов, максимального правдоподобия, минимального контраста, главных компонент. В соответствии с новой парадигмой прикладной математической статистики центральной частью этой научно-практической дисциплины является статистика нечисловых данных (ее называют также статистикой объектов нечисловой природы или нечисловой статистикой), в которой эмпирические и теоретические средние определяются путем решения экстремальных задач. Как показано в настоящей статье, справедливы законы больших чисел, согласно которым эмпирические средние приближаются к теоретическим при росте объема выборки. Большое значение имеют предельные теоремы, описывающие асимптотическое поведение решений экстремальных статистических задач. Например, в методе наименьших квадратов выборочные оценки параметров зависимости приближаются к теоретическим значениям, оценки максимального правдоподобия стремятся к оцениваемым параметрам, и т.д. Вполне естественно стремиться изучить асимптотику решений экстремальных статистических задач в общем случае. Соответствующие результаты могут быть использованы в различных частных случаях. В этом и состоит теоретическая и практическая польза предельных результатов, полученных при наиболее слабых предположениях. Настоящая статья посвящена серии предельных теорем, касающихся асимптотики решений экстремальных статистических задач в наиболее общих постановках. Наряду с результатами теории вероятностей используется аппарат общей топологии. Основные отличия результатов настоящей статьи от многочисленных исследований по близкой тематике таковы: рассматриваются пространства общей природы; поведение решений изучается для экстремальных статистических задач общего вида; удается ослабить обычные требования типа бикомпактности путем введения условий типа асимптотической равномерной разбиваемости
-
Предельная теория непараметрических статистик
01.00.00 Физико-математические науки
Краткое описание
Изучено асимптотическое поведение широкого класса непараметрических статистик, в который входят статистики типа омега-квадрат и типа Колмогорова-Смирнова. Доказаны предельные теоремы. Разработан метод аппроксимации ступенчатыми функциями, с его помощью получен ряд необходимых и достаточных условий
-
Последствия принятия решений для научно-технического и экономического развития
Краткое описание
Конкретные факты, приведенные в настоящей статье, демонстрируют большое значение в современном мире стратегического менеджмента, методов управления инновациями и инвестициями и роль теории принятия решений в этих экономических дисциплинах. Проведен ретроспективный анализ развития исследований по ядерной физике. Для развития фундаментальной и прикладной науки во второй половине ХХ в. весьма большое значение имели два события: решение президента США Рузвельта о развертывании атомного проекта (принятое в ответ на письмо Эйнштейна) и совпадение по времени момента завершения разработки и момента окончания Второй мировой войны. Ядерная бомбардировка Хиросимы и Нагасаки определила развитие ситуации в научно-технической сфере на всю вторую половину ХХ в. Впервые за всю мировую историю руководители ведущих стран наглядно убедились в том, что фундаментальные научные исследования способны принести большую прикладную пользу (с точки зрения руководителей стран). А именно, дать принципиально новое сверхмощное оружие. Следствием явилась широкая организационная и финансовая поддержка фундаментальных и вытекающих из них прикладных научных исследований. Проанализировано влияние фундаментальной и прикладной науки на развитие и эффективное использование новой техники и технического прогресса. Рассмотрено развитие математических методов исследования и информационных технологий, в частности, миф об "искусственном интеллекте"
-
Оценки плотности распределения вероятностей в пространствах произвольной природы
01.00.00 Физико-математические науки
Краткое описание
Введены линейные оценки плотности распределения вероятностей в пространствах произвольной природы и их частные случаи – ядерные и гистограммные оценки, оценки типа Фикс - Ходжеса. Состоятельность и асимптотической нормальность линейных оценок доказана при выполнении естественных условий. Показано, что вероятность попадания в область может быть найдена с помощью линейных оценок плотности. Рассмотрен частный случай конечного множества, установлено, что выборочная мода сходится к теоретической