
Ф.И.О.
Луценко Евгений Вениаминович
Ученая степень
• доктор экономических наук
Ученое звание
профессор
Почетное звание
—
Организация, должность
• Кубанский государственный аграрный университет
кафедра компьютерных технологий и систем
профессор
Научные интересы
Системно-когнитивный анализ, системы искусственного интеллекта, высшие формы сознания, перспективы человека, технологии и общества
Адрес веб-сайта
Электропочта
Текущий рейтинг (суммарный рейтинг статей)
0
TOP5 соавторов
Статей в журнале: 276 шт
Сформировать список работ, опубликованных в Научном журнале КубГАУ
-
01.00.00 Физико-математические науки
Краткое описание
В статье рассматривается применение автоматизированного системно-когнитивного анализа (АСК-анализ), его математической модели – системной теории информации и программного инструментария – интеллектуальной системы «Эйдос» для решения задач, связанных с идентификацией типов и моделей самолетов по их силуэтам снизу, точнее, по внешним контурам: 1) оцифровка сканированных изображений самолетов и создание их математических моделей; 2) формирование математических моделей конкретных самолетов с применением теории информации; 3) формирование моде- лей обобщенных образов самолетов различных типов и моделей и их наглядная визуализация; 4) сравнение образа конкретного самолета с обобщенными образами самолетов различных типов и моделей и определение количественной степени сходства -различия между ними, т.е. идентификация типа и модели самолета по его силуэту (контуру) снизу; 5) количественное определение сходства-различия обобщенных образов самолетов друг с другом, т.е. кластерно-конструктивный анализ обобщенных образов самолетов различных типов и моделей. Предлагается новый подход к оцифровке изображений самолетов, основанный на использовании полярной системы координат, центра тяжести изображения и его внешнего контура. Перед оцифровкой изображений, могут применяться их преобразования, стандартизирующие положение изображений, их размеры (разрешение, расстояние) и угол поворота (ракурс) в трех плоскостях. Поэтому результаты оцифровки и АСК-анализа изображений могут быть инвариантны (независимы) относительно их положения, размеров и поворотов. Форма контура конкретного самолета рассматривается как зашумленное информационное сообщение о типе и модели самолета, включающее как информацию об истинной форме самолета данного типа и модели (чистый сигнал), так и шум, искажающий эту истинную форму, обусловленный зашумляющими воздействиями как средств противодействия обнаружению и идентификации, так и окружающей среды. Программный инструментарий АСК-анализа – интеллектуальная система «Эйдос» обеспечивает идентификацию типа и модели самолета по его силуэту, что продемонстрировано на упрощенном численном примере
-
Краткое описание
Обосновывается положение о том, что теоретические научные модели, создаваемые в результате процесса познания, отражают не реальность «какой она является на самом деле», а всего лишь реальность, «какой она является» в процессе взаимодействия с инструментальными средствами эмпирического познания, т.е. органами восприятия определенного организма, поддерживающего соответствующую форму сознания, экспериментальными установками и информационно-измерительными системами определенного функционального уровня. Приводятся примеры и последствия основных ошибок, исторически допускавшихся учеными при содержательной интерпретации теоретических научных моделей: это ошибки необоснованного придания модели онтологического статуса («гипостазирование») и связанная с ней ошибка придания модели статуса всеобщности. История появления и развития науки рассматривается как процесс последовательного применения естественнонаучного метода к исследованию предметов познания, ранее изучаемых в рамках философии. Формулируется перспективная идея решения задач философии естественнонаучными методами. В рамках реализации этой идеи предлагается естественнонаучная постановка и решение основного вопроса философии. Для этого вводятся новые научные понятия «Относительно объективное» и «Относительно субъективное» и рассматривается зависимость содержания этих понятий от формы сознания. Дается естественнонаучное определение сознания и предлагается периодическая многокритериальная классификация форм сознания, включающая 49 форм сознания: 7 типов сознания и 7 методов познания. Рассматривается диалектика смены мировоззренческих парадигм от древности до наших дней и определяется место научной парадигмы в этом процессе. Описывается действие закона отрицания- отрицания в смене мировоззренческих парадигм и на основе него высказывается гипотеза об основных особенностях будущей мировоззренческой парадигмы, формирующейся в настоящее время. Формулируются принципы корректной содержательной интерпретации научных моделей, следующие из естественнонаучного метода – метода научной индукции. Формулируются принципы открытого сознания, т.е. принципы, открывающие пути формирования новых более совершенных и более адекватных моделей реальности, чем существующие и считающихся всеми единственно верными
-
Краткое описание
В статье предлагается применить автоматизированный системно-когнитивный анализ (АСК-анализ) и его программный инструментарий систему «Эйдос» как для синтеза, так и для применения адаптивных интеллектуальных измерительных систем с целью измерения не значений параметров объектов, а для системной идентификации состояний сложных многофакторных нелинейных динамических систем. Кратко рассматривается математический метод АСК-анализа, реализованный в его программном инструментарии – универсальной когнитивной аналитической системе «Эйдос-Х++». Математический метод АСК-анализа основан на системной теории информации (СТИ), которая создана в рамках реализации программной идеи обобщения всех понятий математики, в частности - теории информации, базирующихся на теории множеств, путем тотальной замены понятия множества на более общее понятие системы и тщательного отслеживания всех последствий этой замены. Благодаря математическому методу, положенному в основу АСК-анализа, этот метод является непараметрическим и позволяет сопоставимо обрабатывать десятки и сотни тысяч градаций факторов и будущих состояний объекта управления (классов) при неполных (фрагментированных), зашумленных данных числовой и нечисловой природы измеряемых в различных единицах измерения. Приводится развернутый численный пример применения АСК-анализа и системы «Эйдос-Х++» как для синтеза системно-когнитивной модели, обеспечивающей многопараметрическую типизацию состояний сложных систем, так и для системной идентификации их состояний, а также для принятии решений об управляющем воздействии, так изменяющем состав объекта управления, чтобы его качество (уровень системности) максимально повышалось при минимальных затратах на это. Для численного примера в качестве сложной системы выбран коллектив фирмы, а его компонент – сотрудники и кандидаты (персонал). Однако необходимо отметить, что этот пример следует рассматривать шире, т.к. АСК-анализ и система «Эйдос» разрабатывались и реализовались в очень обобщенной постановке, постановке, не зависящей от предметной области, и с успехом могут быть применены и в других областях
-
Краткое описание
В статье рассматривается применение автоматизированного системно-когнитивного анализа (АСК-анализ), его математической модели – системной теории информации и реализующего их программного инструментария – интеллектуальной системы «Эйдос» для решения одной из важных задач ампелографии: количественного определения сходства-различия различных клонов винограда по контурам листьев. Для решения этой задачи выполняются следующие этапы: 1) оцифровка сканированных изображений листьев и создание их математических моделей; 2) формирование математических моделей конкретных листьев с применением теории информации; 3) формирование моделей обобщенных образов листьев различных клонов на основе конкретных листьев (многопараметрическая типизация); 4) верификация модели путем идентификации конкретных листьев с обобщенными образами клонов, т.е. классами (системная идентификация); 5) количественное определение сходства-различия клонов, т.е. кластерно-конструктивный анализ обобщенных образов листьев различных клонов. Форма контура конкретного листа рассматривается как зашумленное информационное сообщение о клоне, к которому он относится, включающее как информацию об истинной форме листа данного клона (чистый сигнал), так и шум, искажающий эту истинную форму, обусловленный случайным воздействием окружающей среды. Программный инструментарий АСК-анализа – интеллектуальная система «Эйдос» обеспечивает подавление шума и выделение сигнала об истинной форме листа каждого клона на основе ряда зашумленных конкретных примеров листьев данного клона. Таким образом создается один образ формы листа каждого клона, независящий от их конкретных реализаций, т.е. «Эйдос» этих изображений (в смысле Платона) - прототип или архетип (в смысле Юнга) изображений
-
Асимптотический информационный критерий качества шума
Краткое описание
Интуитивно все понимают, что шум, это сигнал, в котором нет информации или в котором на практике не удается выявить информацию. Точнее, понятно, что некая последовательность элементов (ряд) тем в большей степени является шумом, чем меньше информации содержится в значениях одних элементов о значениях других. Тем более странно, что никто не предложил не только способа, но даже идеи измерения количества информации в одних фрагментах сигнала о других его фрагментах и его использования в качестве критерия оценки степени близости данного сигнала к шуму. Авторами предложен асимптотический информационный критерий качества шума, а также метод, технология и методика его применения на практике. В качестве метода применения асимптотического информационного критерия качества шума на практике предлагается автоматизированный системно-когнитивный анализ (АСК-анализ), в качестве технологии – программный инструментарий АСК-анализа: универсальная когнитивная аналитическая система «Эйдос», в качестве методики – методика создания приложений в данной системе, а также их использования для решения задач идентификации, прогнозирования, принятия решений и исследования предметной области путем исследования ее модели. Приводится наглядный численный пример, иллюстрирующий излагаемые идеи и подтверждающий работоспособность предлагаемого асимптотического информационного критерия качества шума, а также метода, технологии и методики его применения на практике
-
Краткое описание
В статье предлагается применить автоматизированный системно-когнитивный анализ (АСК- анализ) и его программный инструментарий систему «Эйдос» для решения задач многопараметрической типизации, системной идентификации и картографической визуализации пространственно- распределенных природных, экологических и социально-экономических систем. Пусть есть исходное облако точек с координатами (X,Y,Z), для каждой из которых известны значения градаций описательных шкал номинального, порядкового или числового типа S(s1,s2,…,sn). Тогда система «Эйдос» обеспечивает: 1) построение модели, содержащей обобщенные знания о силе и направлении влиянии градаций описательных шкал на значения Z=M(S); 2) оценку значения Z для точек (X,Y), описанных в тех же описательных шкалах S(s1,s2,…,sn), но не входящих в исходное облако точек; 3) картографическую визуализацию пространственного распределения значений функции Z=M(S) для точек, не входящих в исходное облако, с использованием триангуляции Делоне. По сути это означает, что система «Эйдос» обеспечивает восстановление неизвестных значений функции по признакам аргумента и реализует это в универсальной постановке, не зависящей от предметной области. Предлагается новое научное понятие: «Геокогнитивная система», под которым понимается программная система, обеспечивающая преобразование исходных данных в информацию, а ее в знания и картографическую визуализацию этих знаний, в результате чего карта становится когнитивной графикой. Эта возможность может быть использовано для количественной оценки степени пригодности микрозон для выращивания тех или иных культур, оценки экологической обстановки на тех или иных территориях по структуре и интенсивности антропогенной нагрузки, визуализации результатов прогнозирования землетрясений и рисков других нежелательных или чрезвычайных ситуаций, а также для решения многих других подобных по математической сути задач в самых различных предметных областях. Приводится простой численный пример
-
Решение задачи классификации боеприпасов по типам стрелкового нарезного оружия методом АСК-анализа
Краткое описание
В криминалистике существует актуальная задача определения типа стрелкового нарезного оружия (автомат, винтовка, крупный калибр, пистолет) по его использованным боеприпасам, обнаруженным на месте применения оружия. Предлагается решение этой задачи с применением нового инновационного метода искусственного интеллекта: автоматизированного системно-когнитивного анализа (АСК-анализ) и его программного инструментария – универсальной когнитивной аналитической системы «Эйдос». В системе «Эйдос» реализован программный интерфейс, обеспечивающий ввод в систему изображений, и выявление их внешних контуров. Путем многопараметрической типизации в системе создается системно-когнитивная модель, с применением которой, если модель окажется достаточно достоверной, могут решаться задачи системной идентификации, прогнозирования, классификации, поддержки принятия решений и исследования моделируемого объекта путем исследования его модели. Для решения этой задачи выполняются следующие этапы: 1) ввод в систему «Эйдос» изображений боеприпасов и создание их математических моделей; 2) синтез и верификация моделей обобщенных образов боеприпасов по типам оружия на основе контурных изображений конкретных боеприпасов (многопараметрическая типизация); 3) повышение качества модели путем разделения классов на типичную и нетипичную части; 4) количественное определение сходства- различия конкретных типов боеприпасов с обоб- щенными образами боеприпасов различных типов оружия (системная идентификация); 5) количественное определение сходства-различия типов боеприпасов, т.е. кластерно-конструктивный анализ обобщенных образов боеприпасов. Приводится численный пример. Имеется успешный опыт решения подобных задач в других предметных областях
-
Определение типа и модели стрелкового нарезного оружия по боеприпасам методом АСК-анализа
Краткое описание
В криминалистике существуют актуальные задачи определения типа (автомат, винтовка, крупный калибр, пистолет) и конкретной модели стрелкового нарезного оружия по его боеприпасам, в частности, обнаруженным на месте применения оружия. Предлагается решение этой задачи с применением нового инновационного метода искусственного интеллекта: автоматизированного системно-когнитивного анализа (АСК-анализ) и его программного инструментария – универсальной когнитивной аналитической системы «Эйдос». В системе «Эйдос» реализован программный интерфейс, обеспечивающий ввод в систему изображений, и выявление их внешних контуров на основе яркостной и цветовой контрастности. Путем многопараметрической типизации контурных изображений конкретных боеприпасов в системе создается и верифицируется системно-когнитивная модель, с применением которой (если модель окажется достаточно достоверной), могут решаться задачи системной идентификации, классификации, исследования моделируемого объекта путем исследования его модели и другие. Для решения этих задач выполняются следующие этапы: 1) ввод в систему «Эйдос» изображений боеприпасов и создание математических моделей их контуров; 2) синтез и верификация моделей обобщенных образов боеприпасов по типам оружия на основе контурных изображений конкретных боеприпасов (многопараметрическая типизация); 3) количественное определение сходства-различия конкретных боеприпасов с обобщенными образами боеприпасов различных типов и моделей стрелкового нарезного оружия (системная идентификация); 4) количественное определение сходства-различия типов боеприпасов, т.е. кластерно-конструктивный анализ обобщенных образов боеприпасов. Приводится численный пример. Имеется успешный опыт решения подобных задач в других предметных областях
-
01.00.00 Физико-математические науки
Краткое описание
Классическая комбинаторная формула для расчета числа сочетаний из n по m: C(n,m)=n!/(m!(n-m)!) предполагает промежуточный расчет факториалов, что чаще всего невозможно при n>170 из-за ограничений в разрядности чисел, используемых в языках программирования и созданных помощью них системах. Однако, в ряде случаев необходимо произвести расчет числа сочетаний при n и m значительно превосходящих это ограничение, например при их значениях больше 10000. В подобных случаях возникает определенная проблема, проявляющаяся, например в том, что многие on-line сервисы по расчету числа сочетаний при таких параметрах не работают. В данной статье предлагается ее решение в виде алгоритма и программной реализации. Суть подхода состоит в том, чтобы сначала разложить факториалы на простые множители и сократить их, а уже потом уже производить умножения. Этот подход отличается от приводимых в Internet
-
Методы снижения размерности пространства статистических данных
01.00.00 Физико-математические науки
Краткое описание
Одной из «точек роста» прикладной статистики являются методы снижения размерности пространства статистических данных. Они все чаще используются при анализе данных в конкретных прикладных исследованиях, например, социологических. Рассмотрим наиболее перспективные методы снижения размерности. Метод главных компонент является одним из наиболее часто используемых методов снижения размерности. Для визуального анализа данных часто используют проекции исходных векторов на плоскость первых двух главных компонент. Обычно хорошо видна структура данных, выделяются компактные кластеры объектов и отдельно выделяющиеся вектора. Метод главных компонент является одним из методов факторного анализа. Новая идея по сравнению с методом главных компонент состоит в том, что на основе нагрузок происходит разбиение факторов на группы. В одну группу объединяются факторы, имеющие сходное влияние на элементы нового базиса. Затем из каждой группы рекомендуется оставить одного представителя. Иногда вместо выбора представителя расчетным путем формируется новый фактор, являющийся центральным для рассматриваемой группы. Снижение размерности происходит при переходе к системе факторов, являющихся представителями групп. Остальные факторы отбрасываются. На использовании расстояний (мер близости, показателей различия) между признаками и основан обширный класс методов многомерного шкалирования. Основная идея этого класса методов состоит в представлении каждого объекта точкой геометрического пространства (обычно размерности 1, 2 или 3), координатами которой служат значения скрытых (латентных) факторов, в совокупности достаточно адекватно описывающих объект. В качестве примера применения вероятностно-статистического моделирования и результатов статистики нечисловых данных обоснуем состоятельность оценки размерности пространства данных в многомерном шкалировании, ранее предложенной Краскалом из эвристических соображений. Рассмотрен ряд работ по оцениванию размерностей моделей (в регрессионном анализе и в теории классификации). Дана информация об алгоритмах снижения размерности в автоматизированном системно- когнитивный анализе