
Ф.И.О.
Луценко Евгений Вениаминович
Ученая степень
• доктор экономических наук
Ученое звание
профессор
Почетное звание
—
Организация, должность
• Кубанский государственный аграрный университет
кафедра компьютерных технологий и систем
профессор
Научные интересы
Системно-когнитивный анализ, системы искусственного интеллекта, высшие формы сознания, перспективы человека, технологии и общества
Адрес веб-сайта
Электропочта
Текущий рейтинг (суммарный рейтинг статей)
0
TOP5 соавторов
Статей в журнале: 276 шт
Сформировать список работ, опубликованных в Научном журнале КубГАУ
-
АСК-анализ классов вина по его свойствам на основе данных репозитория UCI
Краткое описание
Создание систем искусственного интеллекта является одним из важных и перспективных направлений развития современных информационных технологий. Так как существует множество альтернатив систем искусственного интеллекта, то возникает необходимость оценки качества математических моделей этих систем. В данной работе рассмотрено решение задачи идентификации классов уровней оплаты сотрудников фирмы по их характеристикам. Для достижения поставленной цели необходимы свободный доступ к тестовым исходным данным и методика, которая поможет преобразовать эти данные в форму, которая необходима для работы в системе искусственного интеллекта. Удачным выбором является база данных тестовых задач для систем искусственного интеллекта репозитория UCI. В данной работе использована база данных «Wine Data Set» из банка исходных данных по задачам искусственного интеллекта – репозитория UCI. При этом наиболее достоверной в данном приложении оказались модели INF4, основанная на семантической мере целесообразности информации А.Харкевича при интегральном критерии «Сумма знаний». Точность модели составляет 0,916, что заметно выше, чем достоверность экспертных оценок, которая считается равной около 70%. Для оценки достоверности моделей в АСК-анализе и системе «Эйдос» используется F-критерий Ван Ризбергена и его нечеткое мультиклассовое обобщение, предложенное проф.Е.В.Луценко (L-мера)
-
01.00.00 Физико-математические науки
Краткое описание
Адекватная и технологичная оценка результативности, эффективности и качества научной деятельности конкретных ученых и научных коллективов является актуальной проблемой для информационного общества и общества, основанного на знаниях. Решение этой проблемы является предметом наукометрии и ее целью. Современный этап развития наукометрии существенно отличается от предыдущих появлением в открытом, а также платном on-line доступе огромного объема детализированных данных по большому числу показателей как об отдельных авторах, так и о научных организациях и вузах. В мире, это известные библиографические базы данных: Web of Science, Scopus, Astrophysics Data System, PubMed, MathSciNet, zbMATH, Chemical Abstracts, Springer, Agris или GeoRef. В России это прежде всего Российский индекс научного цитирования (РИНЦ). РИНЦ – это национальная информационно-аналитическая система, аккумулирующая более 9 миллионов публикаций российских ученых, а также информацию о цитировании этих публикаций из более 6000 российских журналов. Данных очень много, это так называемые «Большие данные» ("Big Data"). Основным первичным наукометрическим показателем, на основе которого строятся все остальные, такие, например, как индекс Хирша, является число цитирований работ автора, размещенных в библиографической базе данных. Это число цитирований определяется программным обеспечением РИНЦ путем так называемой «привязки», которая представляет собой грамматический разбор и поиск в базах данных работ автора, релевантных (соответствующих) ссылкам на них из источников литературы в работах различных авторов. Однако проблема состоит в том, что, как показывает опыт, авторы допускают очень большое количество некорректных и просто неполных ссылок в списках литературы, очень далеких от ГОСТ. В настоящее время программное обеспечение РИНЦ не может автоматически привязать эти некорректные ссылки и это требует вмешательства человека. Но централизованно, силами специалистов РИНЦ, это сделать не представляется возможным из-за огромного объема работ, а распределенная работа большого числа специалистов на местах все равно требует централизованной модерации. В результате работа по привязке ссылок к литературным источникам ведется очень медленно и огромный объем ссылок оказывается непривязанными. Это ведет к занижению накометрических показателей как отдельных авторов, так и научных коллективов, что нельзя признать приемлемым. Решение этой проблемы предлагается путем применения автоматизированного системно-когнитивного анализа (АСК-анализ) и его программного инструментария – интеллектуальной системы «Эйдос». Приводится численный пример интеллектуальной привязки реальных некорректных ссылок к работам автора на основе небольшого объема реальных наукометрических данных, находящихся в открытом бесплатном on-line доступе в РИНЦ
-
01.00.00 Физико-математические науки
Краткое описание
Классическая количественная мера достоверности моделей: F-мера Ван Ризбергена основана на подсчете суммарного количества верно и ошибочно классифицированных и не классифицированных объектов обучающей выборки. В мультиклассовых системах классификации объект может одновременно относится ко многим классам. Соответственно, при синтезе модели его описание используется для формирования обобщенных образов многих классов, к которым он относится. При использовании модели для классификации определяется степень сходства-различия объекта со всеми классами, причем истинно-положительным решением может являться принадлежность объекта сразу к нескольким классам. В результате такой классификации получается, что объект не просто правильно или ошибочно относится или не относится к различным классам, как в классической F-мере, но правильно или ошибочно относится или не относится к ним в различной степени. Однако классическая F-мера не учитывает того, что объект может, фактически, одновременно относится ко многим классам (мультиклассовость) и того, что в результате классификации может быть получена различная степень сходства-различия объекта с классами (нечеткость). На численных примерах автором установлено, что при истинно-положительных и истинно-отрицательных решениях модуль сходства-различия объекта с классами значительно выше, чем при ложно-положительных и ложно-отрицательных решениях. Поэтому была предложена L1-мера достоверности моделей, учитывающая не просто сам факт истинно или ложно положительного или отрицательного решения, но и степень уверенности классификатора в этих решениях. При классификации больших данных было обнаружено большое количество ложно-положительных решений с низким уровнем сходства, которые, однако, суммарно вносят большой вклад в снижение достоверности модели. Чтобы преодолеть эту проблему предлагается L2-мера, в которой вместо сумм уровней сходства используется средние уровни сходства по различным вариантам классификации. Таким образом, в данной работе предлагаются меры достоверности моделей, названые L1-мера и L2-мера, смягчающие и преодолевающие недостатки F-меры, эти меры описаны математически и их применение продемонстрировано на простом численном примере. В интеллектуальной системе «Эйдос», которая является программным инструментарием автоматизированного системно-когнитивного анализа (АСК-анализ), реализованы все эти меры достоверности моделей: F, L1 и L2
-
Краткое описание
В авторской интерпретации рассматриваются основные понятия и методы науки, такие как наука, познание, модель, гностицизм и агностицизм, принцип Эшби, факты, эмпирическая закономерность, эмпирический закон, научный закон и другие. Формулируется основная проблема науки, заключающая в том, что когнитивные возможности человека ограничены и не обеспечивают эффективного познания при очень большом объеме исходных данных. Решение этой проблемы предлагается искать на пути автоматизации научных исследований. Традиционно для этого используются информационно-измерительные системы и автоматизированные системы научных исследований (АСНИ). Однако математические методы, применяемые в этих системах, предъявляют жесткие практически невыполнимые требования к исходным данным, что резко снижает эффективность и применимость этих систем на практике. Вместо того, чтобы предъявлять к исходным данным практически неосуществимые требования (вроде нормальности распределения, абсолютной точности и полных повторностей всех сочетаний значений факторов и их полной независимости и аддитивности), автоматизированный системно-когнитивный анализ (АСК-анализ) предлагает без какой-либо предварительной обработки осмыслить эти данные и тем самым преобразовать их в информацию, а затем преобразовать эту информацию в знания путем ее применения для достижения целей (т.е. для управления) и решения задач классификации, поддержки принятия решений и содержательного эмпирического исследования моделируемой предметно области. АСК-анализ представляет собой системный анализ, рассматриваемый как метод научного познания. Это высокоавтоматизированный метод научного познания, имеющий свой развитый и постоянно совершенствуемый программный инструментарий – интеллектуальную систему «Эйдос». Система «Эйдос» разработана в универсальной постановке, не зависящей от предметной области, и может быть применена во всех предметных областях, в которых человек применяет свой естественный интеллект. Система «Эйдос» является инструментом познания, многократно увеличивающим возможности естественного интеллекта, примерно как микроскоп и телескоп многократно увеличивают возможности зрения, правда только в том случае, если оно есть. Предлагается новый вид моделей: содержательные феноменологические модели, которые в настоящее время представлены только системно-когнитивными моделями и занимают промежуточное положение между эмпирическим и теоретическим познанием. Система «Эйдос» рассматривается как инструмент автоматизации процесса познания, обеспечивающий синтез содержательных феноменологических моделей непосредственно на основе эмпирических данных
-
Краткое описание
Автоматизированный системно-когнитивный анализ (АСК-анализ) изображений обеспечивает автоматическое выявление признаков конкретных изображений из цветов пикселей и контуров изображений, синтез обобщенных образов изображений (классов), выявление наиболее характерных и нехарактерных для классов признаков изображений, определение ценности признаков изображений для их различения, удаление из модели малоценных признаков (абстрагирование), решение задач количественного сравнения конкретных изображений с обобщенными образами классов и обобщенных образов классов друг с другом, а также задачи исследования моделируемой предметной области путем исследования ее модели. В работе рассматриваются новые возможности АСК-анализа и реализующей его интеллектуальной системы «Эйдос», обеспечивающие выявление признаков изображений путем их спектрального анализа, формирования обобщенных спектров классов, решение задач сравнения изображений конкретных объектов с классами и классов друг с другом по их спектрам. Впервые стало возможным формировать обобщенные спектры классов с весами цветов по степени их характерности и нехарактерности для классов, причем это не интенсивность цвета в спектре, а количество информации в цвете о принадлежности объекта с этим цветом к данному классу. По сути, речь идет об обобщении спектрального анализа путем применении интеллектуальных когнитивных технологий и теории информации в спектральном анализе. Во-первых, все говорят о том, что в спектральных линиях содержится информация о том, какой элемент или вещество входят в состав объекта, но никто не удосужился посчитать какое же это конкретно количество этой информации, а затем использовать его для определения состава объекта методы распознавания образов, основанные на использовании этой информации. Во-вторых, спектральный анализ традиционно используется для определения элементарного и молекулярного состава объекта, а мы предлагаем использовать его не только для этого, но и для идентификации любых изображений. Приводится численный пример
-
Краткое описание
Стремительно развивающиеся процессы глобальной информатизации общества оказали существенное влияние и на сферу образования. В последнее время в аграрных и других вузах резко возросли объемы генерируемой и обрабатываемой педагогической информации. Стихийно и целенаправленно создаются электронные банки данных педагогической информации, образовательные порталы. Все эти работы требуют значительных затрат труда и времени профессорско-преподавательского состава (ППС) вузов и большого количества технических специалистов в области информационных технологий, а также предполагают наличие соответствующего компьютерного и коммуникационного оборудования. Все это – это уже свершившийся факт. С другой стороны, возникает закономерный вопрос о степени осмысленности и целесообразности отдельных аспектов этого процесса в том виде, в каком он фактически осуществляется, и оценки его влияния на выполнение миссии ВУЗа вообще: «Подготовки качественных специалистов», в частности для регионального агропромышленного комплекса (АПК). По всей видимости, в настоящее время этот процесс развивается стихийно, и никем не спланирован, с учетом с одной стороны затрат различного рода на его осуществление, а с другой стороны - обеспечения его эффективности с точки зрения достижения поставленных целей и получения заданных желаемых результатов, как в натуральном, так и в стоимостном выражении. Осмысленность и оправданность же этому процессу может придать только его существенное положительное влияние на повышение качества образования, причем только при разумных адекватных затратах. Для аргументированного ответа на эти актуальные вопросы авторы предлагают применить теорию рефлексивного управления активными объектами, автоматизированный системно-когнитивный анализ (АСК-анализ), функционально-стоимостной анализ (ФСА) и метод «Директ-костинг». Имеется задел для решения поставленной проблемы: это большой опыт преподавательской и научной деятельности, успешный опыт применения АСК-анализа и ФСА для управления персоналом; программный инструментарий АСК-анализа – интеллектуальная система «Эйдос», находящаяся в полном открытом бесплатном доступе
-
Краткое описание
Существует три основных точки роста современных информационных технологий: это глобальные сети и мобильные коммуникации, перспективные человеко-машинные интерфейсы, интеллектуальные технологии. Как известно, системный (синергетический) эффект обычно наблюдается в мультидисциплинарных и междисциплинарных научных исследованиях. Это означает, что большой интерес представляют направления исследований и разработок, находящиеся на перекрытии перечисленных выше трех перспективных направлений, а именно: перспективные интерфейсы в глобальных мобильных сетях, перспективные интеллектуальные интерфейсы и применение технологий искусственного интеллекта в Internet и мобильных коммуникациях. И особенно высокую актуальность имеет разработка и применение перспективных интеллектуальных интерфейсов в Internet и мобильных коммуникациях. Internet постепенно интеллектуализируется и превращается из нелокального хранилища больших данных (big data) в информационное пространство, содержащее осмысленные большие данные, т. е. «большую информацию» (great info), а затем в пространство знаний или «когнитивное пространство», в котором большая информация активно используется для достижения целей (управления) и превращается в «большие знания» (great knowledge). Появляется все больше сайтов, посвященных искусственному интеллекту, в открытом доступе появляются базы данных для машинного обучения (UCI, Kaggle и другие) и даже on-line интеллектуальные приложения, совершенствуются и интерфейсы, применяемые в Internet. Показательно приобретение разработчиком одной из первых глобальных социальных сетей Facebook Марком Цукербергом фирмы Oculus, являющейся ведущим в мире разработчиком и производителем амуниции виртуальной реальности. Однако учащиеся и ученые до сих пор практически не замечают, что уже давно существует и действует открытая масштабируемая интерактивная интеллектуальная on-line среда для обучения и научных исследований, основанная на автоматизированном системно-когнитивном анализе (АСК-анализ) и его программном инструментарии – интеллектуальной системе «Эйдос», а также сайте автора. Данная статья является ее своеобразной презентацией и призвана ознакомить потенциальных пользователей с возможностями этой среды
-
Краткое описание
Методы Функционально-стоимостного анализа и «Директ-костинг» общеизвестны и популярны. По своим идеям и принципам Функционально- стоимостной анализ и метод «Директ-костинг» очень сходны, если не сказать тождественны. С одной стороны эти идеи весьма разумны, хорошо обоснованы теоретически и доказали свою эффективность на практике. С другой стороны широкому применению этих методов препятствует сложность получения больших объемов детализированной технологической и финансово- экономической информации, а также необходимость ее тщательного исследования компетентными специалистами, хорошо и содержательно разбирающимися в предметной области. В этом и состоит противоречие между желанием применить методы ФСА и «Директ- костинг» сложностью это сделать на практике. Это противоречие представляет собой реальную проблему и часто обескураживает и вызывает разочарование этими методами. В данной работе предлагается простое и эффективное решение данной проблемы, хорошо обоснованное теоретически, оснащенное всем необходимым методическим и программным инструментарием и широко и успешно апробированное на практике. Предлагаемое решение основано на двух простых идеях: 1) вместо сбора и проведения содержательного исследования большого объема технологической и финансово-экономической информации применить подходы, приятные в теории управления; 2) для создания системы автоматизированного управления натуральной и финансово-экономической эффективностью затрат применить автоматизированный системно- когнитивный анализ и его программный инструментарий – интеллектуальную систему «Эйдос». В названии специальности 08.00.05 – Экономика и управление народным хозяйством, есть такие слова: «управление предприятиями, отраслями, комплексами, инновациями». Использование термина «Управление» предполагает, что есть модель, отражающая влияние факторов на объект управления, и есть управляющая система, принимающая решения на основе этой модели. Однако, как правило, в диссертациях по этой специальности мы ничего этого не видим, а видим лишь финансово- экономические расчеты. В статье предлагается подход, основанный на теории управления, снимающий этот недостаток
-
06.00.00 Сельскохозяйственные науки
Краткое описание
В садах персика во влажных субтропиках России наиболее опасной и вредоносной болезнью является курчавость листьев. В связи с высокой степенью опасности курчавости листьев персика, нами впервые для региона была поставлена задача проанализировать зависимость развития курчавости листьев персика от погодных условий. Для решения поставленной задачи предлагается применить новую инновационную интеллектуальную технологию: автоматизированный системно-когнитивный анализ (АСК-анализ) и его программный инструментарий – систему «Эйдос». Для построения модели, основываясь на собственных наблюдениях и опыте российских и зарубежных коллег, было решено использовать следующие факторы: сумма температур выше +4 °С текущего года (за период с января по апрель), сумма температур выше +4 °С предыдущего года (за весь год), сумма осадков текущего года (за период с января по апрель), сумма осадков предыдущего года (за весь год), количество часов инфицирования (в текущем году). Установлено, наибольшую значимость в динамике развития и распространения курчавости листьев персика имеют такие факторы как количество часов инфицирования, сумма температур выше +4 °С в апреле и в период с января по апрель, а также сумма осадков в марте и в апреле. Высокие показатели распространения и развития курчавости обуславливаются количеством часов инфицирования в диапазоне 1440…2064 час., низкими температурами воздуха в марте и апреле (сумма температур выше +4 °С – 89,4-240,4° и 283,7-316,7°, соответственно) и высокими – в январе и феврале (сумма температур выше +4 °С – 155,3-259,6° и 243,5-280,1°, соответственно)
-
Краткое описание
Многоотраслевая корпорация представляет собой сверхсложную многопараметрическую динамическую систему. Применение классических методов прогнозирования применительно к подобным объектам наталкивается на ряд сложностей, обусловленных ее экономической природой. В статье обосновываются требования к методу прогнозирования и на основе этих требований выбирается сам метод и его программный инструментарий