
Ф.И.О.
Жуков Михаил Станиславович
Ученая степень
—
Ученое звание
—
Почетное звание
—
Организация, должность
• Московский государственный технический университет им. Н.Э. Баумана
аналитик
Научные интересы
Адрес веб-сайта
—
Электропочта
Текущий рейтинг (суммарный рейтинг статей)
0
TOP5 соавторов
Статей в журнале: 1 шт
Сформировать список работ, опубликованных в Научном журнале КубГАУ
-
Задача исследования итогового ранжирования мнений группы экспертов с помощью медианы Кемени
01.00.00 Физико-математические науки
Краткое описание
В различных прикладных областях возникает необходимость анализа нескольких экспертных упорядочений, т.е. кластеризованных ранжировок объектов экспертизы. К таким областям относятся технические исследования, экология, менеджмент, экономика, социология, прогнозирование и т.д. В качестве объектов могут выступать образцы продукции, технологии, математические модели, проекты, кандидаты на должность и др. При построении итогового мнения комиссии экспертов необходимо найти кластеризованную ранжировку, усредняющую ответы экспертов. В статье описан ряд методов усреднения совокупности кластеризованных ранжировок, среди которых выделяется метод расчета медианы Кемени, основанный на использовании расстояния Кемени. Настоящая статья посвящена вычислительной стороне задачи исследования итогового ранжирования мнений группы экспертов с помощью медианы Кемени. В настоящее время неизвестно ни одного точного алгоритма поиска множества всех медиан Кемени для заданного множества перестановок (ранжировок без связей), кроме полного перебора. Однако, существуют различные подходы поиска части или всего множества медиан, которые проанализированы в этой работе. Эвристические алгоритмы Жихарева служат хорошим инструментом для исследования множества всех медиан Кемени: выявления каких- либо закономерностей при изучении взаимного расположения медиан по отношению к экспертной совокупности или экспертному подмножеству множества перестановок экспертных ответов. Литвак предлагает один точный и один эвристический подход к вычислению одной медианы среди всего возможного множества решений задачи. В настоящей статье введены необходимые понятия, проанализированы преимущества медианы Кемени среди других возможных поисков экспертного упорядочивания. Выявлены сильные и сравнительно слабые стороны рассматриваемых способов вычисления