
Ф.И.О.
Трунев Александр Петрович
Ученая степень
• кандидат физико-математических наук
Ученое звание
—
Почетное звание
—
Организация, должность
• A&E Trounev IT Consulting, Toronto, Canada
директор
Научные интересы
Математическое моделирование социально-экономических и природных процессов
Адрес веб-сайта
—
Электропочта
Текущий рейтинг (суммарный рейтинг статей)
0
TOP5 соавторов
Статей в журнале: 125 шт
Сформировать список работ, опубликованных в Научном журнале КубГАУ
-
Динамика кварков в метрике адронов и структура барионов
01.00.00 Физико-математические науки
Краткое описание
В работе рассмотрена система уравнений Дирака, описывающая динамику кварков в метрике адронов. Предполагается, что взаимодействие кварков осуществляется через поле Янга-Миллса и электромагнитное поле. Сформулирована замкнутая модель барионов в случае стационарной метрики. Вычислены магнитные моменты протона, нейтрона и лямбда бариона
-
Динамика кварков в метрике барионов и структура ядра
01.00.00 Физико-математические науки
Краткое описание
В работе рассмотрена система уравнений Дирака, описывающая динамику кварков в метрике адронов. Вычислен магнитный момент и энергия связи нуклонов в случае ядра дейтерия.
-
Динамика преонов и структура кварков и лептонов
01.00.00 Физико-математические науки
Краткое описание
В работе рассмотрена модель структуры материи, в которой элементарные частицы, атомы и молекулы представляются состоящими из частиц преонов
-
Динамика релятивистских частиц в метрике галактик
01.00.00 Физико-математические науки
Краткое описание
В настоящей работе исследована динамика релятивистских частиц в аксиально-симметричных метриках. Построена метрика, обладающая осевой симметрией и содержащая два центра гравитации и логарифмическую особенность. Рассматривается применение полученных метрик для описания движения частиц в галактиках. Установлено, что в метрике с двумя центрами гравитации существуют устойчивые орбиты, на которых скорость частиц достигает значения v/ c ≈ 7.0 . Радиус орбит изменяется в широких пределах, но орбита остается практически плоской. Неустойчивые же движения завершаются тем, что частицы покидают систему. Обсуждается гипотеза, что такого рода релятивистские объекты могут служить источниками магнитного поля планет, звезд и галактик. Рассмотрен вопрос о реализации в метрике галактик гипотетического лифта Эйнштейна, в котором существует однородное гравитационное поле, имитирующее ускоренное движение лифта. Построена численная модель однородного поля в ограниченной области пространства. Показано, что такого рода ускоренные объекты порождают релятивистский эффект в форме логарифмического потенциала, не убывающего при удалении от центра системы. Предполагается, что такого рода потенциалы могут быть связаны с полем Хиггса, ответственным за возникновение инертной массы элементарных частиц
-
Динамика релятивистских частиц в метрике кольцеобразных и спиральных галактик
01.00.00 Физико-математические науки
Краткое описание
В настоящей работе мы исследуем динамику релятивистских частиц в метрике кольцеобразных и спиральных галактик в общей теории относительности. На основе решения уравнений Эйнштейна получена метрика, обладающая осевой симметрией, содержащая N центров гравитации и логарифмическую особенность. Рассматривается применение полученных метрик для описания движения частиц в спиральных и кольцеобразных галактиках. Используя решения уравнений Эйнштейна для вакуума, дано объяснение вращения материи в спиральных галактиках. Получено выражение гравитационного потенциала во внутренней области спиральных галактик, согласующееся с экспериментальными данными по вращению СО и водорода. Установлено, что в метрике с N центрами гравитации, распределенными на окружности, существуют как локальные движения вблизи одного центра тяготения, так и движение вокруг N центров тяготения. Переход от одного режима движения к другому определяется начальным расстоянием до окружности, на которой распределены центры тяготения. Выведена система нелинейных уравнений параболического типа, описывающая эволюцию метрики в потоках Риччи. Сформулирована задача об установлении потенциалов системы в потоках Риччи. Рассматривается применение теории для описания спиральных и кольцеобразных галактик
-
Динамика частиц в метрике с логарифмическим потенциалом
01.00.00 Физико-математические науки
Краткое описание
В работе рассмотрена проблема моделирования движения частиц в единой теории поля в 6D, в теории супергравитации в 112D и в метрике галактик. Исследована центрально-симметрическая метрика в 112-мерном римановом пространстве, зависящая от радиальной координаты, времени и 110 углов. Выведена система уравнений, описывающих угловое движение на гиперсфере произвольной размерности N. Показано, что движение на гиперсфере зависит от 2(N-1) сингулярных точек. Установлен общий характер релятивистского движения на гиперсфере при его отображении на плоскости и в трехмерном пространстве. Показано, что движение определяется отражением от особых точек, что при отображении движения на плоскости приводит в некоторых случаях к сгущению траекторий в окрестности сторон прямоугольника. В 6D исследована метрика, описывающая случай движения с двумя центрами симметрии. Показано, что в такой метрике существует класс точных решений, логарифмически зависящих от координат центров гравитации. Обнаружено, что в такой системе существует движение со сгущением траекторий вокруг сторон прямоугольника, что объясняется рассеянием пробных частиц на источниках гравитации. Указан общий характер углового движения на гиперсфере и радиального движения в 6D в метрике с логарифмическим потенциалом. Доказано, что аналогичные решения с логарифмическим потенциалом существуют в метрике галактик в метрической теории гравитации Эйнштейна. Обсуждается связь полученных решений с нелинейной электродинамикой, с теорий взаимодействия кварков и с теорией Янга-Миллса
-
Динамическая модель движителя электромагнитного типа
01.00.00 Физико-математические науки
Краткое описание
В работе обсуждается динамическая модель ракетного движителя электромагнитного типа, состоящего из источника электромагнитных колебаний радиочастотного диапазона и конического резонатора, в котором возбуждаются электромагнитные колебания. Исследованы процессы возбуждения электромагнитных колебаний в полости с проводящими стенками, а также волн в поле Янга-Миллса. Создана численная многомерная нестационарная модель, описывающая процессы установления электромагнитных колебаний в резонаторе с учетом конечной проводимости стенок. Отдельно рассмотрен случай стоячих волн в резонаторе с проводящими стенками. Показано, что моды колебаний в проводящем резонаторе отличаются от таковых в идеальном резонаторе, как в установившихся, так и в неустановившихся процессах. Предложен механизм образования силы тяги с учетом изменения метрики пространства-времени, вклада токов элементарных частиц, поля Янга-Миллса и электромагнитного поля. Показано, что влияние поле Янга-Миллса взывает изменение электрической проницаемости, что ведет к изменению емкости резонатора. Развитая динамическая модель, которая позволяет осуществить оптимизацию силы тяги по значительному числу параметров. Установлено, что сила тяги возрастает в поле Янга- Миллса вблизи основной резонансной частоты. При наличии тепловых колебаний и поля Янга-Миллса сила тяги меняет знак, что свидетельствует наличии различных режимов колебаний
-
Единая теория поля и супергравитация в 112D
01.00.00 Физико-математические науки
Краткое описание
В работе исследована проблема построения единой теории поля на основе теории супергравитации в 112D. Предполагается, что в 112-мерном римановом пространстве сосуществуют 37 трехмерных миров обладающих единым временем и связанных гравитацией. Исследована центрально-симметрическая метрика, зависящая от радиальной координаты в наблюдаемом физическом пространстве одного из миров. Предполагается, что в 112D выполняется волновое уравнение общего вида, описывающее динамику скалярного поля. Из этого уравнения выводится волновое уравнение в четырехмерном пространстве-времени, содержащее слагаемые, описывающие вклад дополнительных измерений. Показано, что квантовые числа задачи на собственные значения позволяют описывать структуру атома и атомного ядра в предположении, что задана полная масса центрального тела. Исследована задача о динамике скалярного поля в 112D в центрально- симметрической метрике. Построена теория квантования поля, как в общем случае, так и в частном случае зависимости метрики от эллиптической функции Вейерштрасса. Показано, что в этом случае существуют ограниченные периодические потенциалы и соответствующие периодические решения, зависящие от энергии, проекции углового момента и от инвариантов функции Вейерштрасса. Установлено, что в возбужденном состоянии с достаточно большой величиной проекции углового момента радиальная часть волновой функции является периодической в ограниченном интервале, тогда как в основном состоянии допускаются волны на все оси радиальной координаты. Обсуждается связь полученных решений с теорий Янга-Миллса
-
Задача многих тел в метрике с распределением источников на окружности
01.00.00 Физико-математические науки
Краткое описание
В настоящей работе мы рассматриваем задачу многих тел в общей теории относительности в случае распределения N сингулярностей на окружности. Указано точное решение задачи для произвольного распределения сингулярностей. Показано, что статическая метрика с N сингулярностями соответствует в теории Ньютона N центрам тяготения, движущимся вокруг центрального тела по круговой орбите в неинерциальной системе отсчета, вращающейся с периодом обращения тел. Рассмотрена постановка задачи многих тел распределенных в начальный момент времени на окружности. В численных расчетах изучены свойства гравитационных потенциалов в задаче об установлении статического состояния, при котором несколько сингулярностей сохраняют начальное положение на окружности. Это достигается за счет релятивистских эффектов, не имеющих аналогов в теории тяготения Ньютона. Используя свойства релятивистских потенциалов, обоснован переход от релятивистской модели движения частиц к динамическим уравнениям в классической теории. Выведена система нелинейных уравнений параболического типа, описывающая эволюцию метрики в потоках Риччи. Сформулирована задача об установлении потенциалов системы в потоках Риччи. Рассматривается применение теории для описания кольцеобразных галактик, планетарных колец и пояса астероидов
-
Закон Бэра и гипотезы Эйнштейна о вихрях
01.00.00 Физико-математические науки
Краткое описание
В работе рассматриваются численные решения уравнений Навье-Стокса, описывающие ламинарные и турбулентные течения в каналах различной геометрии и в полости при больших числах Рейнольдса. Разработан оригинальный численный алгоритм интегрирования системы нелинейных дифференциальных уравнений в частных производных, основанный на сходимости последовательности решений задачи Дирихле. На основе этого алгоритма создана численная модель слияния двух ламинарных потоков в Т-образном канале. Установлен новый механизм меандрирования, заключающийся в том, что при слиянии двух потоков образуется струя, содержащая зоны возвратного течения. Исследовано вихревое движение в прямоугольной полости. Установлено, что численное решение задачи с разрывными граничными условиями теряет устойчивость при числе Рейнольдса Re>2340. Исследованы траектории частиц пассивной примеси в цилиндрической полости. Дано объяснение поведения чаинок в чашке чая при формировании тороидального вихря в результате кругового помешивания, чем подтверждается известная гипотеза Эйнштейна. Развита численная модель течения в открытом канале с уклоном дна во вращающейся системе. Показано, что как в ламинарном, так и в турбулентном потоке при некоторых условиях в канале возникает вторичное вихревое течение, обусловленное силой Кориолиса, чем объясняется известный закона Бэра и подтверждается гипотеза Эйнштейна