№ 120(6), Июнь, 2016
Дата выпуска: 30.06.2016
Архив журнала: Статей 112, 299 kb
-
01.00.00 Физико-математические науки
О развитии математических методов контроллинга
01.00.00 Физико-математические науки
Краткое описание
На основе объективного анализа приходится констатировать, что в арсенале менеджеров, особенно зарубежных, сегодня практически нет принципиально новых методов и инструментов контроллинга. Так полагает исполнительный директор "Объединения контроллеров" проф. С.Г. Фалько. Однако перспективные математические и инструментальные методы контроллинга активно разрабатываются в нашей стране. Надо их внедрять. Например, менеджерам целесообразно использовать методы, рассмотренные в монографии Орлова А.И., Луценко Е.В., Лойко В.И. "Перспективные математические и инструментальные методы контроллинга" (2015). Эти методы основаны на современном развитии математики в целом - на системной нечеткой интервальной математике (см. одноименную книгу Орлова А.И. и Луценко Е.В., 2014). Рассматриваемые методы разработаны в соответствии с новой парадигмой математических методов исследования. Она включает в себя новые парадигмы прикладной статистики, математической статистики, математических методов экономики, методов анализа статистических и экспертных данных в задачах управления. В XXI веке выпущено более 10 учебников, разработанных в соответствии с новой парадигмой математических методов исследования. Системный подход к решению конкретных прикладных задач часто требует выхода за пределы экономики. Весьма важными являются процедуры внедрения принципиально новых методов и инструментов. В настоящей статье мы рассматриваем перечисленные выше научные результаты в их взаимосвязи
-
Новая хронология всеобщей и Российской истории - основа государственно-патриотического мировоззрения
01.00.00 Физико-математические науки
Краткое описание
Взаимосвязи математической статистики (шире - математических методов исследования) и истории многогранны. По нашему мнению, история математической статистики - неотъемлемая часть этой математической дисциплины. Дан обзор наших работ по истории статистических методов. Велика роль математической статистики для истории. В настоящей статье ограничимся вопросами хронологии. В течение столетий хронология рассматривалась как часть прикладной математики. Основная проблема состоит в том, что вся излагаемая в школьных учебниках "общепринятая" концепция истории России и мира в целом сфальсифицирована противниками России после развала всемирной Империи (Русского Царства) в начале 17 века – 400 лет назад. Рассказы об исторических событиях – это информационное оружие, и его использовали новые властители для подавления сопротивления побежденных. Новая математико-статистическая хронология всеобщей и российской истории, построенная научным коллективом под руководством академика РАН А.Т.Фоменко, оказалась полезной и для обсуждения современных экономических и политических проблем взаимоотношений России и Запада в XXI века. По нашему мнению, новая хронология всеобщей и российской истории должна стать одной из основ государственно- патриотического мировоззрения и вытекающих из него практических решений. Цель настоящей статьи - дать с этой точки зрения первоначальное представление о новой хронологии
-
Интервальная модель крупномасштабной кластеризации материи во Вселенной
01.00.00 Физико-математические науки
Краткое описание
В статье представлена модель крупномасштабной кластеризации материи во вселенной. Базу математических расчетов составляет интервальная математика
-
Динамика частиц в метрике с логарифмическим потенциалом
01.00.00 Физико-математические науки
Краткое описание
В работе рассмотрена проблема моделирования движения частиц в единой теории поля в 6D, в теории супергравитации в 112D и в метрике галактик. Исследована центрально-симметрическая метрика в 112-мерном римановом пространстве, зависящая от радиальной координаты, времени и 110 углов. Выведена система уравнений, описывающих угловое движение на гиперсфере произвольной размерности N. Показано, что движение на гиперсфере зависит от 2(N-1) сингулярных точек. Установлен общий характер релятивистского движения на гиперсфере при его отображении на плоскости и в трехмерном пространстве. Показано, что движение определяется отражением от особых точек, что при отображении движения на плоскости приводит в некоторых случаях к сгущению траекторий в окрестности сторон прямоугольника. В 6D исследована метрика, описывающая случай движения с двумя центрами симметрии. Показано, что в такой метрике существует класс точных решений, логарифмически зависящих от координат центров гравитации. Обнаружено, что в такой системе существует движение со сгущением траекторий вокруг сторон прямоугольника, что объясняется рассеянием пробных частиц на источниках гравитации. Указан общий характер углового движения на гиперсфере и радиального движения в 6D в метрике с логарифмическим потенциалом. Доказано, что аналогичные решения с логарифмическим потенциалом существуют в метрике галактик в метрической теории гравитации Эйнштейна. Обсуждается связь полученных решений с нелинейной электродинамикой, с теорий взаимодействия кварков и с теорией Янга-Миллса
-
Логарифмический закон в динамических системах от кварков до галактик
01.00.00 Физико-математические науки
Краткое описание
В работе рассмотрены различные примеры динамических систем, в которых движение определяется логарифмическим законом – системы кварков, гидродинамические системы, галактики. Указан общий характер углового движения на гиперсфере в пространстве с произвольной размерностью и радиального движения в 6D в метрике с логарифмическим потенциалом. В 6D исследована метрика, описывающая случай движения с двумя центрами симметрии. Показано, что в такой метрике существует класс точных решений, логарифмически зависящих от координат центров гравитации. Установлено, что в спиральных галактиках орбитальное движение обусловлено логарифмическим потенциалом, который является точным решением уравнений поля в теории гравитации Эйнштейна. Наиболее известным и широко распространенным в природе случаем является турбулентное течение над гладкой или шероховатой поверхностью, в котором скорость логарифмически зависит от расстояния до стенки. Дан вывод логарифмического профиля скорости в турбулентном потоке из уравнений Навье-Стокса. Установлена аналогия логарифмического профиля скорости и логарифмического закона кавитации в случае разрушения материалов при ударных нагрузках. В электродинамике закон Ампера, описывающий взаимодействие проводников с током является следствием логарифмической зависимости векторного потенциала от расстояния до оси проводника. Существует, однако, альтернативный вывод закона Ампера из гипотезы Римана о связи токов с движением зарядов
-
01.00.00 Физико-математические науки
Краткое описание
В статье описан и проиллюстрирован метод математического моделирования применительно к процессу принятия решения в условиях риска и неопределенности на примере строительства сельскохозяйственного объекта
-
Логарифмический закон и коэффициент эмерджентности классических и квантовых систем
01.00.00 Физико-математические науки
Краткое описание
В работе рассмотрены различные примеры физических систем, состояние которых определяется логарифмическим законом – статистические квантовые и классические системы, и релятивистское движение в многомерных пространствах. Установлено, что статистики Ферми-Дирака, Бозе-Эйнштейна и Максвелла- Больцмана можно описать единым уравнением, которое следует из уравнения Эйнштейна для систем, обладающих центральной симметрией. Построен коэффициент эмерджентности классических и квантовых систем. Установлена взаимосвязь статистических и динамических параметров в теории супергравитации в пространствах произвольной размерности. Показано, что описание движения большого числа частиц может быть сведено к задаче о движении на гиперсфере. Радиальное движение в такой модели сводится к известным распределениям квантовой и классической статистики. Модель углового движения сводится к системе нелинейных уравнений, описывающих взаимодействие пробной частицы с источниками логарифмического типа. Уравнение Гамильтона-Якоби проинтегрировано при самых общих предположениях в случае центрально-симметрической метрики. Получена зависимость действия от параметров системы и метрики. Показано, что в случае фермионов действие достигает экстремума в четырехмерном пространстве. В случае же бозонов существует локальный экстремум действия в пространствах любой размерности
-
01.00.00 Физико-математические науки
Краткое описание
В работе приведена пространственная структура крупномасштабных транспортных систем. Модель транспортной сети может быть представлена в виде графа, с множеством вершин соответствующих узлам сети и множеством ребер – участкам дорог соединяющие эти вершины. В качестве модели карты дорог предлагается использовать предфрактальные графы, которые естественным образом отражают структуру связей при рассмотрении транспортной сети в различных масштабах (страны, регионов, областей). Предфрактальные графы позволяют описать структурную динамику изучаемой системы в дискретном времени. Одним из наиболее распространенных сценариев структурной динамики – рост структуры. В формулировке задач организации транспортных маршрутов содержатся требования критерии к нахождению оптимальных решений. Зачастую эти требования и критерии являются противоречащими друг другу. Что приводит к появлению многокритериальной постановки задачи. Рассмотрена многокритериальная постановка задачи на классе предфрактальных графов. Построен оптимальный алгоритм выделения наибольших максимальных цепей по заданному критерию и даны оценки по остальным критериям. В работе рассчитывается вычислительная сложность построенного алгоритма выделения наибольших максимальных цепей на предфрактальном графе и обосновывается преимущество работы алгоритма на последних перед алгоритмом выделения наибольших максимальных цепей на обычных графах. Построенный алгоритм на предфрактальных графах имеет полиномиальную сложность
-
Прорастание семян видов сем. Ranunculaceae флоры Якутии
Краткое описание
Работа проводилась на базе коллекции природной флоры Якутского ботанического сада. Объектом исследований служили семена 22 видов сем Ranunculaceae. Известно, что семена многих лютиковых характеризуются морфофизиологическим покоем, связанным с недоразвитием зародыша (Николаева, 1988; 1999), чем обусловлено замедленное прорастание их семян. Лабораторная всхожесть семян изученных видов варьирует от 0 до 100%. Среди них не обнаружено видов, семена которых обладают взрывным или быстрым прорастанием (1 тип прорастания). Прорастание изученных семян отмечается, начиная с 6-7 дня и более. Изученные семена равномерно распределились между 2 (12 видов) и 3 типами прорастания (10 видов). 2 тип характеризуется медленным прорастанием, 3 тип – слабым прорастанием или отсутствием его
-
Перспективы культуры видов семейства Betulaceae в Ростовской области
Краткое описание
Подведены итоги многолетнего интродукционного испытания представителей семейства Betulaceae S.F. Gray в Ботаническом саду ЮФУ. Всего изучено 33 вида этого семейства. Оценка зимостойкости представителей семейства показала, что абсолютной устойчивостью ко всему комплексу факторов зимнего периода обладают представители рода Betula, а также Alnus incana (L.) Moench и Corylus colurna L. Виды рода Betula и Corylus отнесены к засухоустойчивым растениям. Высоко засухоустойчивые виды – Carpinus betulus L., C. turczaninowii Hance, Alnus incana (L.) Moench и Ostrya carpinifolia Scop. Менее засухоустойчив – Alnus glutinosa (L.) Gaertn. Большинство испытанных видов следует отнести к гемиксерофитам. Высокая степень поражения грибными болезнями видов родов Alnus, Betula и Carpinus делает их не пригодными для региональной культуры. Возбудителем заболевания является гриб Chondrostereum purpureum (Pers.) Pouzar. По совокупности эколого- биологических свойств перспективными для культуры остаются только виды рода Corylus. В интродукционное испытание целесообразно привлечь засухоустойчивые виды семейства Betulaceae: Alnus barbata C.A. Mey., A. rubra Bong., A. rugosa (Du Roi) Spreng., Carpinus cordata Blume, C. caucasica Grossh., C. caroliniana Walter, C. orientalis Miller., C. tschonoskii Maxim., Betula insignis Franch., B. lanata (Regel) V.N. Vassil., B. luminifera H.J.P. Winkl., B. nikoensis Koidz., B. forrestii Hand.-Mazz., B. utilis D. Don., Ostrya virginiana K.Koch