№ 121(7), Сентябрь, 2016
Дата выпуска: 30.09.2016
Архив журнала: Статей 138, 339 kb
-
01.00.00 Физико-математические науки
01.00.00 Физико-математические науки
Краткое описание
В СССР ВАК с 1975 и до самого распада СССР подчинялась не Министерству образования и науки, а непосредственно Совету министров СССР. Однако с тех пор существует устойчивая тенденция постепенного снижения статуса ВАК. Сегодня ВАК уже не просто входит в Минобрнауки, а является всего лишь одним из подразделений одной из его структур: Рособрнадзора. Снижение статуса ВАК неизбежно приводит к снижению как статуса, так и адекватности присваиваемых им ученых степеней и научных званий. Этот процесс обесценивания традиционных ученых степеней и званий, присваиваемых ВАК, дошел до того, что несколько лет назад отменили надбавки к заработной плате за них. Теперь вместо них каждым вузом и НИИ разрабатывается свои локальные, т.е. несопоставимые друг с другом наукометрические методики оценки результатов научной и педагогической деятельности. При всем разнообразии этих методик, общим для всех них является несоразмерно большая роль, которая отводится в них индексу Хирша. Значение индекса Хирша начинает играть важную роль при защитах, при рассмотрении конкурсных дел на замещение должностей, а также при определении величины ежемесячного материального поощрения за результаты научной и педагогической деятельности. Сам по себе, этот индекс теоретически вполне обоснован. Однако, в связи с практикой его применения в наших условиях, в коллективном сознании научного сообщества возникла своеобразная мания, которую авторы называют «Хиршамания». Эта мания характеризуется повышенным нездоровым интересом к самому значению индекса Хирша, а также к некорректному манипулированию его значением, т.е. к искусственному неадекватному преувеличению этого значения, а также рядом негативных последствий этого интереса. В данной работе делается попытка сконструировать количественную меру для оценки степени некорректного манипулирования значением индекса Хирша, а также предлагается научно-обоснованная модификация индекса Хирша, нечувствительная (устойчивая) к манипулированию им. Приводится методика всех численных расчетов, которая достаточно проста, чтобы ее мог применить любой автор
-
Отечественная научная школа в области эконометрики
01.00.00 Физико-математические науки
Краткое описание
Рассмотрено формирование отечественной научной школы в области эконометрики, полученные в ходе ее развития научные результаты, возможности их использования при решении задач экономики, организации производства и контроллинга на предприятиях и в организациях, а также при преподавании. Под эконометрикой понимаем научную и учебную дисциплину, посвященную развитию и применению статистических методов изучения экономических явлений и процессов, короче, статистические методы в экономике. Поэтому можно сказать, что очень многие отечественные книги и статьи, в частности, публикации автора настоящей работы с начала 70-х годов, относятся к эконометрике. Однако в настоящей статье рассмотрим только работы, в названии которых есть слово «эконометрика». В нашей стране термин "эконометрика" стал популярен с середины 90-х годов. Однако многие публикации и учебные курсы подготовлены в устаревшей западной парадигме. Они не соответствуют новой парадигме математических методов экономики, новой парадигме прикладной статистики и математической статистики, математических методов исследования. Отечественная научная школа в области эконометрики действует в рамках научной школы в области теории вероятностей и математической статистики, основанной А.Н. Колмогоровым, развивается в соответствии с новой парадигмой математических методов. Представляется необходимым рассмотреть основные результаты отечественной научной школы в области эконометрики. Дана информация об институциональном оформлении отечественной научной школы по эконометрике, в частности, о деятельности Института высоких статистических технологий и эконометрики
-
Уточнение модели балансирующего робота логико-эмпирическим методом
01.00.00 Физико-математические науки
Краткое описание
В данной статье изучается математическая модель объекта «перевернутый маятник» на примере неустойчивого электромеханического устройства – балансирующего робота на колёсной паре. К сожалению, многие подробности модели объекта не известны. Логико-эмпирический метод предлагает выдвижение гипотез об отличии фактической модели от её математического выражения на основе логического анализа с последующим уточнением этого выражения на практике и проверкой выдвинутой гипотезы моделированием системы с уточненной моделью. В результате найдены поправки к модели, которые содержат нелинейные компоненты. С их помощью лучше учтены динамические особенности исполнительного механизма, фильтров, трения и склонности объекта к колебаниям
-
К методам исследования разломов в условиях вибрационных воздействий
01.00.00 Физико-математические науки
Краткое описание
Предложен подход к моделированию напряженно-деформированного состояния литосферных структур вблизи разломов посредством моделирования их пластинами Кирхгофа на трехмерном упругом основании. Описан эффективный метод решения задач для пластин с прямолинейными разломами, основанный на преобразовании дифференциального оператора, позволяющий провести анализ полученных решений для различных условий контакта в области разлома. Метод представлен на примере задачи о вибрации двух протяженных пластин на поверхности упругого слоя под действием сосредоточенной поверхностной нагрузки. Результаты численной реализации разработанного алгоритма дают возможность выявить влияние свойств подложки, характеристик пластин и характера их взаимодействия на границе на картину волнового процесса в исследуемой структуре. При этом получаемые конфигурации прохождения гармонического сигнала через разлом могут служить индикатором его типа. Предложенный подход целесообразно использовать для диагностики наличия и определения типа разлома на основе данных измерений сигналов от виброисточников в тех случаях, когда геофизическая среда может быть смоделирована описанной структурой. Проблемы изучения рассмотренных в работе объектов возникают в различных областях техники, для их решения также применим предложенный метод
-
Имитационное моделирование распространения эпидемий на основе агентного подхода
01.00.00 Физико-математические науки
Краткое описание
Сегодня инфекционные болезни остаются одной из ведущих причин преждевременной смерти людей на Земле. Агентное моделирование может сыграть важную роль в прогнозировании распространения болезни и в оценке мер по локализации. Целью работы является построение имитационной мультиагентной модели распространения эпидемии для формирования мер по эффективному снижению уровня заболеваемости. Использование имитационного мультиагентного подхода в моделировании эпидемий обусловлено тем, что подход позволяет рассматривать много факторов влияющих на эпидемический процесс, дает возможность проводить численные эксперименты. Процессы пространственного распространения и временного изменения этих двух групп эпидемий автор называет инфекционной динамикой. Обычно трудно реализуемые пространственные составляющие динамики в предлагаемых моделях берёт на себя топология предфрактального графа, которая наращивается объёмными графами - затравками, а динамика наращения предфрактального графа, называемая его распознаванием, отвечает за временную составляющую процесса. Под агентом понимается элементарный участник исследования. Агент активен, находится в некотором состоянии, которое может меняться при влиянии факторов. К свойствам агента отнесятся характеристики, формирующие уровень иммунитета: рост, вес, пол, доход, семейное положение, образование, география
-
Размещение центров на многовзвешенных предфрактальных графах
01.00.00 Физико-математические науки
Краткое описание
В работе предложена многокритериальная постановка задачи размещения центров на многовзвешенном предфрактальном графе. Приведена оценка радиального критерия предфрактального графа, порожденного затравкой-звездой. Предложен полиномиальный алгоритм размещения центра предфрактального графа при сохранении смежности старых ребер. Проведена оценка вычислительной сложности алгоритма и рассмотрен пример работы алгоритма
-
Столкновение частиц в потоках Риччи
01.00.00 Физико-математические науки
Краткое описание
В настоящей работе исследована задача о столкновении частиц, представленных сингулярностями гравитационного поля, в потоках Риччи. Выведена система нелинейных уравнений параболического типа, описывающая эволюцию аксиально-симметричных метрик. Рассматривается метрика, обладающая осевой симметрией и содержащая два сингулярности, имитирующие частицы конечной массы. Численно исследовано изменение метрики при столкновении частиц. Были рассмотрены две постановки задачи, в одной из которых частицы разлетаются после соударения, а в другой, в результате слияния двух частиц, образуется новая устойчивая статическая система, которую можно интерпретировать как новую частицу. В начальных и граничных условиях используются точные решения статической задачи, поэтому при соударении сохраняются особенности метрики, обусловленные наличием частиц. В численных экспериментах установлено, что столкновение частиц в потоках Риччи приводит к образованию гравитационных волн, похожих по своей структуре на волны, зарегистрированные в экспериментах LIGO. Следовательно, можно предположить, что наблюдаемые гравитационные волны обусловлены, главным образом, переходными процессами, связанными с изменением метрики системы. Развита модель, описывающая излучение гравитационных волн при столкновении частиц в потоках Риччи. Исследовано влияние параметров задачи – скорости и массы частиц, на амплитуду и интенсивность излучения гравитационных волн
-
Гравитационные волны в потоках Риччи при слиянии сингулярностей
01.00.00 Физико-математические науки
Краткое описание
В настоящей работе исследована задача об излучении гравитационных волн, образующихся при столкновении частиц, представленных сингулярностями гравитационного поля. Выведена система нелинейных уравнений параболического типа, описывающая эволюцию аксиально- симметричных метрик в потоках Риччи. Развита модель, описывающая излучение гравитационных волн при столкновении и слиянии частиц в потоках Риччи. Показано, что теория, описывающая потоки Риччи в задаче о слиянии черных дыр, согласуется с теорией Эйнштейна-Инфельда, описывающей динамику материальных частиц представленных сингулярностями гравитационного поля. В качестве примера рассматривается метрика, обладающая осевой симметрией и содержащая два сингулярности, имитирующие частицы конечной массы. Численно исследовано изменение метрики при столкновении и слиянии частиц. В начальных и граничных условиях используются точные решения статической задачи, поэтому при соударении сохраняются особенности метрики, обусловленные наличием частиц. В численных экспериментах установлено, что столкновение частиц в потоках Риччи приводит к образованию гравитационных волн, похожих по своей структуре на волны, зарегистрированные в экспериментах LIGO. Следовательно, можно предположить, что наблюдаемые гравитационные волны обусловлены, главным образом, переходными процессами, связанными с изменением метрики системы. Исследовано влияние параметров задачи – скорости и массы частиц, на амплитуду и интенсивность излучения гравитационных волн. Обнаружено хаотическое поведение гравитационных потенциалов при слиянии сингулярностей в потоках Риччи
-
01.00.00 Физико-математические науки
Краткое описание
Учет влияния реакции диссоциации/рекомбинации молекул воды важен для понимания процессов электроконвекции, поскольку ряд авторов считает, что появление новых носителей тока H + и OH- может привести к уменьшению пространственного заряда и, соответственно, к исчезновению электроконвекции. Однако, как показано в работе [5], диссоциация молекул воды, хотя и уменьшает пространственный заряд и увеличивает пороговое значение падения скачка потенциала, при котором начинается электроконвекция, тем не менее, она сохраняется и достаточно эффективно перемешивает раствор. Данная статья посвящена математическому моделированию электродиффузии четырех сортов ионов одновременно (двух ионов соли, а также H+ и OH- ионов) в диффузионном слое в электромембранных системах с идеально селективной мембраной при совместном влиянии нарушения электронейтральности и реакции диссоциации/ рекомбинации молекул воды, разработке математических моделей этих процессов, построению эффективных алгоритмов асимптотического и численного анализа для различных типов электролитов. В статье предложена новая математическая модель процесса переноса ионов соли с учетом пространственного заряда и реакции диссоциации/ рекомбинации воды в виде краевой задачи для системы обыкновенных дифференциальных уравнений. Данная система приведена к виду удобному для численного решения. Рассчитанные необходимые дополнительные краевые условия для напряженности электрического поля. Численному и асимптотическому решению этой краевой задачи и физико-химическому анализу влияния реакции диссоциации/ рекомбинации на перенос ионов соли предполагается посвятить следующие части работы
-
Автоматизация решения системных задач методом структурированных систем системологии
01.00.00 Физико-математические науки
Краткое описание
В статье производится обзор метода структурированных систем системологии, применяемых для решения системных задач. Изложен авторский модифицированный алгоритм структурирования систем Дж. Клира. Представлен программный модуль, реализующий модифицированный алгоритм структурирования систем