Московский государственный технический университет им. Н.Э. Баумана
Список авторов организации
Список статей, написанных авторами организации
-
Аддитивно-мультипликативная модель оценки рисков при создании ракетно-космической техники
01.00.00 Физико-математические науки
Краткое описание
Впервые разработана в общем виде аддитивно-мультипликативная модель оценки рисков (вероятностей рисковых событий). В двухуровневой схеме на нижнем уровне оценки рисков объединяются аддитивно, на верхнем – мультипликативно. Аддитивно-мультипликативная модель применена для оценки рисков (1) выполнения инновационных проектов в вузах (с участием внешних партнеров), (2) выпуска новых инновационных изделий, (3) проектов создания ракетно-космической техники
-
Анализ экспертных упорядочений
01.00.00 Физико-математические науки
Краткое описание
В различных прикладных областях возникает необходимость анализа нескольких экспертных упорядочений, т.е. кластеризованных ранжировок объектов экспертизы. К таким областям относятся технические исследования, экология, менеджмент, экономика, социология, прогнозирование и т.д. В качестве объектов могут выступать образцы продукции, технологии, математические модели, проекты, кандидаты на должность и др. Получены кластеризованные ранжировки могут быть как с помощью экспертов, так и объективным путем, например, при сопоставлении математических моделей с экспериментальными данными с помощью того или иного критерия качества. Описанный в настоящей статье метод был разработан в связи с проблемами химической безопасности биосферы и экологического страхования. Мы предлагаем новый метод построения кластеризованной ранжировки, согласованной (в раскрытом ниже смысле) со всеми рассматриваемыми кластеризованными ранжировками. При этом противоречия между отдельными исходными ранжировками оказываются заключенными внутри кластеров согласованной ранжировки. В результате упорядоченность кластеров отражает общее мнение экспертов, точнее, то общее, что содержится одновременно во всех исходных ранжировках. Вновь построенная кластеризованная ранжировка часто называется согласующей по отношению к исходным кластеризованным ранжировкам. В кластеры заключены объекты, по поводу которых некоторые из исходных ранжировок противоречат друг другу. Для их упорядочения необходимо провести новые исследования. Эти исследования могут быть как формально-математическими (вычисление медианы Кемени, упорядочения по средним арифметическим рангов или по медианам рангов и т.п.), так и требовать привлечения новой информации из соответствующей прикладной области, возможно, проведения дополнительных научно-исследовательских работ. В настоящей статье введены необходимые понятия, затем впервые сформулирован алгоритм согласования в общем виде и рассмотрены его свойства
-
01.00.00 Физико-математические науки
Краткое описание
Рассмотрим один подход к определению шага квантования (группировки) при переходе от непрерывной шкалы к дискретной. Прикладная цель – выбор числа градаций в социологических анкетах. В соответствии с методологией общей теории устойчивости предлагаем выбирать шаг так, чтобы ошибки, порожденные квантованием, были того же порядка, что и ошибки, присущие ответам респондентов (опрашиваемых). При конечном интервале изменения значений измеряемого признака шаг шкалы однозначно определяет число градаций. Оказывается, во многих вопросах закрытого типа достаточно указывать 3 – 6 градаций ответов (подсказок). На основе вероятностной модели доказаны три теоремы о квантовании. Они позволили разработать рекомендации по выбору числа градаций в социологических анкетах. Идея «квантования» имеет применения не только в социологии. Отметим, что применять ее можно не только для выбора числа градаций. Так, весьма интересны два применения идеи «квантования» в теории управления запасами – в двухуровневой модели и в классической модели Вильсона с учетом отклонений от нее (демонстрируется польза «квантования» как способа повышения устойчивости). Для двухуровневой модели управления запасами доказаны три теоремы. Мы отказались от предположения пуассоновости спроса, которое редко выполняется на практике, и получили в общем случае достаточно простые формулы для нахождения оптимальных значений управляющих параметров, попутно исправив ошибки предшественников. В очередной раз видим взаимопроникновение статистических методов, возникших для анализа данных из различных предметных областей, в данном случае, из социологии и логистики. Имеем еще одно доказательство того, что статистические методы – единая научно-практическая область, которую нецелесообразно делить по областям применения
-
Асимптотика оценок плотности распределения вероятностей
01.00.00 Физико-математические науки
Краткое описание
Непараметрические оценки плотности распределения вероятностей в пространствах произвольной природы - один из основных инструментов нечисловой статистики. Рассмотрены их частные случаи – ядерные оценки плотности в пространствах произвольной природы, гистограммные оценки и оценки типа Фикс- Ходжеса. Цель настоящей статьи - завершение цикла работ, посвященного математическому изучению асимптотических свойств различных видов непараметрических оценок плотности распределения вероятности в пространствах общей природы. Тем самым подводится математический фундамент под применения таких оценок в нечисловой статистике. Начинаем с рассмотрения среднего квадрата ошибки ядерной оценки плотности и - с целью максимизации порядка его убывания - выбор ядерной функции и последовательности показателей размытости. Основные понятия - круговая функция распределения и круговая плотность. Порядок сходимости в общем случае тот же, что и при оценивании плотности числовой случайной величины, но основные условия наложены не на плотность случайной величины, а на круговую плотность. Далее рассматриваем другие виды непараметрических оценок плотности - гистограммные оценки и оценки типа Фикс- Ходжеса. Затем изучаем непараметрические оценки регрессии и их применение для решения задач дискриминантного анализа в пространстве общей природы
-
Асимптотические методы статистического контроля
01.00.00 Физико-математические науки
Краткое описание
Статистический контроль - это выборочный контроль на основе теории вероятностей и математической статистики. Рассказано о развитии методов статистического контроля в нашей стране. Рассмотрены основы теории статистического контроля - планы статистического контроля и их оперативные характеристики, риски поставщика и потребителя, приемочный и браковочный уровни дефектности. Получены асимптотический метод синтеза планов контроля на основе предела среднего выходного уровня дефектности. Разработана асимптотическая теория одноступенчатых планов. Сформулированы некоторые нерешенные математические задачи теории статистического контроля
-
Асимптотический информационный критерий качества шума
Краткое описание
Интуитивно все понимают, что шум, это сигнал, в котором нет информации или в котором на практике не удается выявить информацию. Точнее, понятно, что некая последовательность элементов (ряд) тем в большей степени является шумом, чем меньше информации содержится в значениях одних элементов о значениях других. Тем более странно, что никто не предложил не только способа, но даже идеи измерения количества информации в одних фрагментах сигнала о других его фрагментах и его использования в качестве критерия оценки степени близости данного сигнала к шуму. Авторами предложен асимптотический информационный критерий качества шума, а также метод, технология и методика его применения на практике. В качестве метода применения асимптотического информационного критерия качества шума на практике предлагается автоматизированный системно-когнитивный анализ (АСК-анализ), в качестве технологии – программный инструментарий АСК-анализа: универсальная когнитивная аналитическая система «Эйдос», в качестве методики – методика создания приложений в данной системе, а также их использования для решения задач идентификации, прогнозирования, принятия решений и исследования предметной области путем исследования ее модели. Приводится наглядный численный пример, иллюстрирующий излагаемые идеи и подтверждающий работоспособность предлагаемого асимптотического информационного критерия качества шума, а также метода, технологии и методики его применения на практике
-
Базовые результаты математической теории классификации
01.00.00 Физико-математические науки
Краткое описание
Математическая теория классификации содержит большое число подходов, моделей, методов, алгоритмов. Эта теория весьма многообразна. Выделим в ней три базовых результата - оптимальный метод диагностики (дискриминантного анализа), адекватный показатель качества алгоритма дискриминантного анализа, утверждение об остановке после конечного числа шагов итерационных алгоритмов кластер-анализа. А именно, на основе леммы Неймана - Пирсона показано, что оптимальный метод диагностики существует и выражается через плотности распределения вероятностей, соответствующие классам. Если плотности неизвестны, следует использовать их непараметрические оценки по обучающим выборкам. Часто используют такой показатель качества алгоритма диагностики, как «вероятность (или доля) правильной классификации (диагностики)» – чем этот показатель больше, тем алгоритм лучше. Показана нецелесообразность повсеместного применения этого показателя и обоснован другой – «прогностическая сила», полученная путем пересчета на модель линейного дискриминантного анализа. Остановка после конечного числа шагов итерационных алгоритмов кластер-анализа продемонстрирована на примере метода k-средних. По нашему мнению, эти результаты являются основными в теории классификации, с ними должен быть знаком каждый специалист, развивающий эту теорию или применяющий её
-
Вероятностно-статистические методы в работах А.Н. Колмогорова
01.00.00 Физико-математические науки
Краткое описание
С современной точки зрения рассмотрены работы А.Н. Колмогорова по аксиоматическому подходу к теории вероятностей, критерию согласия эмпирического распределения с теоретическим, свойствам медианы как оценки центра распределения, эффекту «вздувания» коэффициента корреляции, теории средних величин, статистической теории кристаллизации металлов, методу наименьших квадратов, свойствам сумм случайного числа случайных слагаемых, статистическому контролю, несмещенным оценкам, аксиоматическому получению логарифмически нормального закона распределения при дроблении, методам обнаружения различий при экспериментах типа погодных
-
Вероятностно-статистические методы в работах Б.В. Гнеденко
01.00.00 Физико-математические науки
Краткое описание
Анализируются актуальные для XXI в. вероятностно-статистические методы в работах академика АН УССР Бориса Владимировича Гнеденко. Основное внимание уделено предельным теоремам теории вероятностей, математической статистике, теории надежности, статистическим методам управления качеством продукции и теории массового обслуживания. Рассмотрены основные этапы научного пути Б.В. Гнеденко, его взгляды на историю математики и преподавание
-
Вероятностно-статистические модели корреляции и регрессии
08.00.13 Математические и инструментальные методы экономики (экономические науки)
Краткое описание
Коэффициенты корреляции и детерминации широко используются при статистическом анализе данных. Согласно теории измерений линейный парный коэффициент корреляции Пирсона применим к переменным, измеренным в шкале интервалов. Его нельзя использовать при анализе порядковых данных. Непараметрические ранговые коэффициенты Спирмена и Кендалла оценивают связь порядковых переменных. Критическое значение при проверке значимости отличия коэффициента корреляции от 0 зависит от объема выборки. Поэтому использование "шкалы Чеддока" некорректно. При применении пассивного эксперимента коэффициенты корреляции обоснованно использовать для прогнозирования, но не для управления. Для получения предназначенных для управления вероятностно-статистических моделей необходим активный эксперимент. Влияние выбросов на коэффициент корреляции Пирсона весьма велико. При увеличении числа проанализированных наборов предикторов заметно растет максимальный из соответствующих коэффициентов корреляции - показателей качества приближения (эффект «вздувания» коэффициента корреляции). Рассмотрены четыре основные модели регрессионного анализа. Выделены модели метода наименьших квадратов с детерминированной независимой переменной. Распределение отклонений произвольно, однако для получения предельных распределений оценок параметров и регрессионной зависимости предполагаем выполнение условий центральной предельной теоремы. Второй тип моделей основан на выборке случайных векторов. Зависимость является непараметрической, распределение двумерного вектора - произвольным. Об оценке дисперсии независимой переменной можно говорить только в модели на основе выборки случайных векторов, равно как и о коэффициенте детерминации как критерии качества модели. Обсуждается сглаживание временных рядов. Рассмотрены методы восстановления зависимостей в пространствах общей природы. Показано, что предельное распределение естественной оценки размерности модели является геометрическим, а построение информативного подмножества признаков наталкивается на эффект "вздувания коэффициентов корреляции". Обсуждаются различные подходы к регрессионному анализ интервальных данных. Анализ многообразия моделей регрессионного анализа приводит к выводу, что не существует единой "стандартной модели"