01.00.00 Физико-математические науки
-
01.00.00 Физико-математические науки
Краткое описание
Построена метрика, описывающая ускоренные и вращающиеся системы отсчета в общей теории относительности в случае произвольной зависимости ускорения и угловой скорости системы от времени. Установлено, что тензор кривизны в таких метриках равен нулю, что соответствует движению в плоских пространствах. Показано, что движение пробных тел в метрике ускоренной и вращающейся системы отсчета в общей теории относительности осуществляется подобно классическому движению в неинерциальной системе отсчета. Уравнения Максвелла и Янга-Миллса преобразованы к подвижным осям в метрике, описывающей ускоренные и вращающиеся системы отсчета в общей теории относительности в случае произвольной зависимости ускорения и угловой скорости системы от времени. Обсуждаются известные эффекты, связанные с ускорением и (или) вращением системы отсчета – эффект Саньяка, эффект Стюарта-Толмена и другие аналогичные эффекты. Построены численные модели распространения волн в неинерциальных системах отсчета в случае зависимости потенциала от одного, двух и трех пространственных измерений. В численных экспериментах показано, что ускорение системы отсчета приводит к эффектам запаздывания и опережения волн, а также к нарушению симметрии волнового фронта, что свидетельствует о локальном изменении скорости сигнала
-
01.00.00 Физико-математические науки
Краткое описание
В статье впервые рассмотрены интегративные коды элементов дискретных систем и показано, что эти коды в общем случае делятся на групповую и системную части. Групповая часть кода характеризует множество элементов с одинаковым значением признака как единое целое, а системная часть кода появляется тогда, когда различные множества объединяются в систему. Установлено, что через средневзвешенную величину указанных частей интегративного кода в точности могут быть выражены информационные меры комбинаторного, вероятностного и синергетического подходов к определению количества информации. На этом основании сделано заключение, что между данными подходами существует интегративно-кодовая взаимосвязь, а фигурирующие в них виды информации имеют генетическое родство. При этом показано, что информация, рассматриваемая в синергетическом подходе (сведения о конечном множестве как едином целом), является генетически первичной по отношению к информации, с которой оперируют комбинаторный и вероятностный подходы (снятая неопределенность выбора одной из множества возможностей). Также дан ответ на вопрос о том, почему различные представления об информации приводят к одинаковым формулам ее измерения.
-
Динамика релятивистских частиц в метрике галактик
01.00.00 Физико-математические науки
Краткое описание
В настоящей работе исследована динамика релятивистских частиц в аксиально-симметричных метриках. Построена метрика, обладающая осевой симметрией и содержащая два центра гравитации и логарифмическую особенность. Рассматривается применение полученных метрик для описания движения частиц в галактиках. Установлено, что в метрике с двумя центрами гравитации существуют устойчивые орбиты, на которых скорость частиц достигает значения v/ c ≈ 7.0 . Радиус орбит изменяется в широких пределах, но орбита остается практически плоской. Неустойчивые же движения завершаются тем, что частицы покидают систему. Обсуждается гипотеза, что такого рода релятивистские объекты могут служить источниками магнитного поля планет, звезд и галактик. Рассмотрен вопрос о реализации в метрике галактик гипотетического лифта Эйнштейна, в котором существует однородное гравитационное поле, имитирующее ускоренное движение лифта. Построена численная модель однородного поля в ограниченной области пространства. Показано, что такого рода ускоренные объекты порождают релятивистский эффект в форме логарифмического потенциала, не убывающего при удалении от центра системы. Предполагается, что такого рода потенциалы могут быть связаны с полем Хиггса, ответственным за возникновение инертной массы элементарных частиц
-
Динамическая модель движителя электромагнитного типа
01.00.00 Физико-математические науки
Краткое описание
В работе обсуждается динамическая модель ракетного движителя электромагнитного типа, состоящего из источника электромагнитных колебаний радиочастотного диапазона и конического резонатора, в котором возбуждаются электромагнитные колебания. Исследованы процессы возбуждения электромагнитных колебаний в полости с проводящими стенками, а также волн в поле Янга-Миллса. Создана численная многомерная нестационарная модель, описывающая процессы установления электромагнитных колебаний в резонаторе с учетом конечной проводимости стенок. Отдельно рассмотрен случай стоячих волн в резонаторе с проводящими стенками. Показано, что моды колебаний в проводящем резонаторе отличаются от таковых в идеальном резонаторе, как в установившихся, так и в неустановившихся процессах. Предложен механизм образования силы тяги с учетом изменения метрики пространства-времени, вклада токов элементарных частиц, поля Янга-Миллса и электромагнитного поля. Показано, что влияние поле Янга-Миллса взывает изменение электрической проницаемости, что ведет к изменению емкости резонатора. Развитая динамическая модель, которая позволяет осуществить оптимизацию силы тяги по значительному числу параметров. Установлено, что сила тяги возрастает в поле Янга- Миллса вблизи основной резонансной частоты. При наличии тепловых колебаний и поля Янга-Миллса сила тяги меняет знак, что свидетельствует наличии различных режимов колебаний
-
Теория относительности и динамическая модель движителя электромагнитного типа
01.00.00 Физико-математические науки
Краткое описание
В работе обсуждается динамическая модель ракетного движителя электромагнитного типа, состоящего из источника электромагнитных колебаний радиочастотного диапазона и конического резонатора, в котором возбуждаются электромагнитные колебания. Исследованы процессы возбуждения электромагнитных колебаний в полости с проводящими стенками, а также волн в поле Янга-Миллса. Создана численная многомерная нестационарная модель, описывающая процессы установления электромагнитных колебаний в резонаторе с учетом конечной проводимости стенок. Отдельно рассмотрен случай стоячих волн в резонаторе с проводящими стенками. Показано, что моды колебаний в проводящем резонаторе отличаются от таковых в идеальном резонаторе, как в установившихся, так и в неустановившихся процессах. Предложен механизм образования силы тяги с учетом изменения метрики пространства-времени, вклада токов элементарных частиц, поля Янга-Миллса и электромагнитного поля. Показано, что влияние поле Янга-Миллса взывает изменение диэлектрической проницаемости, что ведет к изменению емкости резонатора. Таким образом, в системе возникает параметрический резонанс, что приводит к усилению поля Янга-Миллса и к возникновению силы тяги. Развитая динамическая модель, которая позволяет осуществить оптимизацию силы тяги по значительному числу параметров. Установлено, что сила тяги возрастает в поле Янга- Миллса вблизи основной резонансной частоты. Предложена модель, описывающая возбуждение и излучение нелинейных волн поля Янга-Миллса. Показано, что нелинейные волны поля Янга-Миллса более эффективно уносят импульс из системы по сравнению с электромагнитными волнами, чем объясняется значительное на несколько порядков увеличение силы тяги в двигателях электромагнитного типа по сравнению с фотонными двигателями
-
01.00.00 Физико-математические науки
Краткое описание
Понятие генерирующего многочлена появилось в конце прошлого века в работах Сальтмана и связано с обратной задачей теории Галуа, которая ещё далека от своего полного решения. Пусть G – конечная группа и K – поле, многочлен f(x,t1, … , tn) с коэффициентами из поля K является генерирующим для группы G, если группа Галуа этого многочлена над полем K(t1, … , tn) изоморфна G и если для любого расширения Галуа L/K с группой Галуа изоморфной G, существуют такие значения параметров ti = ai , i = 1,2, … , n, что поле L – поле расщепления многочлена f(x,a1, … , an) над K. Генерирующие многочлены над данным полем K и данной конечной группы G не всегда существуют, а если существуют, то строить их не просто. Например, для циклической группы восьмого порядка C8 над полем рациональных чисел Q не существует генерирующего многочлена, хотя найдены конкретные многочлены с рациональными коэффициентами, имеющие группу Галуа изоморфную C. Поэтому представляет интерес построение генерирующих многочленов для группы G в случае, если G – прямое произведение группы меньших порядков. В данной работе показывается как решать эту задачу в случае, когда G – прямое произведение определенных циклических групп, находится вид соответствующих генерирующих многочленов. Кроме того, приводятся конструкции и над полями характеристики 0 и над полями характеристики 2
-
Динамика геомагнитного поля и супергравитация в 112D
01.00.00 Физико-математические науки
Краткое описание
В работе рассматривается проблема смены полярности геомагнитного поля как задача единой теории поля и теории супергравитации в 112D. Исследована центрально-симметрическая метрика, зависящая от радиальной координаты в наблюдаемом физическом пространстве одного из миров. Выведено уравнение, связывающее магнитное поле планеты с гравитационным полем в 5D. Обсуждается проблема изменения полярности магнитного поля Земли. Быстрое изменение полярности геомагнитного поля, обнаруженное на основе палеомагнитных данных, моделируется как движения на гиперсфере в 112D, что соответствует 110 углам. Простейшим примером такого движения в случае трех углов является модель Эйлера, описывающая вращение твердого тела. В этой модели существуют режимы с быстрым переворотом тела при сохранении момента импульса. Если тело обладает магнитным моментом, то при таком перевороте происходит изменение полярности магнитного поля. Предполагается, что центральное ядро земли намагничено и окружено некоторым числом спутников, каждый из которых обладает магнитным моментов. Спутники взаимодействую с центральным ядром и между собой посредством гравитации и через магнитное поле. Центральное ядро может совершать внезапные перевороты, как в модели Эйлера. Показано, что длительность фазы с постоянной полярностью и время переворота зависят от возмущения величины момента и асимметрии ядра. Обсуждается гипотеза Эйнштейна о происхождении магнитного поля при вращении нейтральных масс. Показано, что движения на гиперсфере в 112D имеет своим следствием магнитное поле, обусловленное взаимодействием нуклонов в ядрах. Такого рода магнитное поле максимально проявляется для изотопов железа, кобальта и никеля, входящих в состав земного ядра
-
Единая теория поля и супергравитация в 112D
01.00.00 Физико-математические науки
Краткое описание
В работе исследована проблема построения единой теории поля на основе теории супергравитации в 112D. Предполагается, что в 112-мерном римановом пространстве сосуществуют 37 трехмерных миров обладающих единым временем и связанных гравитацией. Исследована центрально-симметрическая метрика, зависящая от радиальной координаты в наблюдаемом физическом пространстве одного из миров. Предполагается, что в 112D выполняется волновое уравнение общего вида, описывающее динамику скалярного поля. Из этого уравнения выводится волновое уравнение в четырехмерном пространстве-времени, содержащее слагаемые, описывающие вклад дополнительных измерений. Показано, что квантовые числа задачи на собственные значения позволяют описывать структуру атома и атомного ядра в предположении, что задана полная масса центрального тела. Исследована задача о динамике скалярного поля в 112D в центрально- симметрической метрике. Построена теория квантования поля, как в общем случае, так и в частном случае зависимости метрики от эллиптической функции Вейерштрасса. Показано, что в этом случае существуют ограниченные периодические потенциалы и соответствующие периодические решения, зависящие от энергии, проекции углового момента и от инвариантов функции Вейерштрасса. Установлено, что в возбужденном состоянии с достаточно большой величиной проекции углового момента радиальная часть волновой функции является периодической в ограниченном интервале, тогда как в основном состоянии допускаются волны на все оси радиальной координаты. Обсуждается связь полученных решений с теорий Янга-Миллса
-
Прикладная статистика - состояние и перспективы
01.00.00 Физико-математические науки
Краткое описание
Прикладная статистика - наука о том, как обрабатывать статистические данные. Как самостоятельная научно-практическая область она развивается весьма быстро. В ее состав входят многочисленные широко и глубоко развитые научные направления. Те, кто применяет прикладную статистику и другие статистические методы, обычно ориентированы на конкретные области исследования, т.е. не являются специалистами по прикладной статистике. Поэтому представляется полезным провести критический анализ современного состояния прикладной статистики и обсудить тенденции развития статистических методов. Большая практическая значимость прикладной статистики оправдывает целесообразность проведения работ по развитию ее методологии, в которых эта область научной и прикладной деятельности рассматривалась бы как целое. Дана краткая информация об истории прикладной статистики. На основе наукометрии прикладной статистики констатируем, что каждый специалист владеет лишь небольшой частью накопленных в этой области знаний. Обсуждаются пять актуальных направлений, в которых развивается современная прикладная статистика, т.е. пять "точек роста": непараметрика, робастность, бутстреп, статистика интервальных данных, нечисловая статистика. Подробнее рассмотрены основные идеи нечисловой статистики. В течение последних более чем 60 лет в России наблюдается огромный разрыв между государственной статистикой и научным сообществом специалистов по статистическим методам
-
Новая хронология всеобщей и Российской истории - основа государственно-патриотического мировоззрения
01.00.00 Физико-математические науки
Краткое описание
Взаимосвязи математической статистики (шире - математических методов исследования) и истории многогранны. По нашему мнению, история математической статистики - неотъемлемая часть этой математической дисциплины. Дан обзор наших работ по истории статистических методов. Велика роль математической статистики для истории. В настоящей статье ограничимся вопросами хронологии. В течение столетий хронология рассматривалась как часть прикладной математики. Основная проблема состоит в том, что вся излагаемая в школьных учебниках "общепринятая" концепция истории России и мира в целом сфальсифицирована противниками России после развала всемирной Империи (Русского Царства) в начале 17 века – 400 лет назад. Рассказы об исторических событиях – это информационное оружие, и его использовали новые властители для подавления сопротивления побежденных. Новая математико-статистическая хронология всеобщей и российской истории, построенная научным коллективом под руководством академика РАН А.Т.Фоменко, оказалась полезной и для обсуждения современных экономических и политических проблем взаимоотношений России и Запада в XXI века. По нашему мнению, новая хронология всеобщей и российской истории должна стать одной из основ государственно- патриотического мировоззрения и вытекающих из него практических решений. Цель настоящей статьи - дать с этой точки зрения первоначальное представление о новой хронологии