01.00.00 Физико-математические науки
-
Эконометрика как учебная дисциплина
01.00.00 Физико-математические науки
Краткое описание
Статистические методы широко используются в отечественных технико-экономических исследованиях. Однако для большинства менеджеров, экономистов и инженеров они являются экзотикой. Это объясняется тем, что в вузах современным статистическим методам не учат. Обсудим сложившуюся ситуацию, уделив основное внимание статистическим методам в экономических и технико-экономических исследованиях, т.е. эконометрике. В мировой науке эконометрика занимает достойное место. Имеются научные журналы по эконометрике, нобелевские премии по экономике присуждены ряду эконометриков. Положение в области научных и практических работ и особенно преподавания эконометрики в России является неблагополучным. Зачастую за эконометрику выдают отдельные частные построения, например, относящиеся к регрессионному анализу. Статья посвящена эконометрике как учебной дисциплине. Начинается курс с обсуждения структуры современной эконометрики, соотношения прикладной статистики и эконометрических методов. Рассмотрены выборочные исследования (анализ результатов опросов), элементы эконометрики чисел, методы статистической проверки гипотез однородности. Даны понятия о регрессионном анализе, эконометрических методах классификации, современной теории измерений. Важное место занимает статистика нечисловых данных (включая нечеткие множества и их связь со случайными), статистика интервальных данных. Обсуждается проблема устойчивости статистических процедур по отношению к допустимым отклонениям исходных данных и предпосылок модели. Дано представление об эконометрических методах экспертных исследований и управления качеством, анализе и прогнозе временных рядов, эконометрике прогнозирования и риска
-
Распространение и ветвление стримеров в проводящих средах
01.00.00 Физико-математические науки
Краткое описание
В настоящей работе развита модель, описывающая распространение и ветвление стримера в проводящей среде во внешнем электрическом поле. Для описания вклада токов проводимости мы модифицировали стандартное уравнение электростатики с учетом вихревой составляющей электрического поля. В результате такого обобщения сформулирована модель стримера в форме системы нелинейных уравнений параболического типа. В рамках предложенной модели рассматривается задача о распространении стримера в форме бегущей волны, что приводит к возникновению стримеров Саффмана-Тейлора. Для стримеров такого типа сформулирована проблема ветвления, которая имеет однозначное решение. Найдена зависимость точки ветвления от параметров задачи – скорости стримера, коэффициента диффузии электронов и напряженности внешнего электрического поля. Механизм ветвления головки стримера путем разделения на две части хорошо изучен и для его описания было сформулировано несколько альтернативных моделей. Новизна обсуждаемой постановки задачи заключается в том, что стример распадается на два трехмерных канала, симметричных относительно заданной плоскости. В численных экспериментах также обнаружен механизм ветвления стримера в области катода, связанный с разделением основного канала на несколько боковых ветвей. Отмечается, что в природе реализуются оба механизма ветвления, тогда как в теории исследуется преимущественно неустойчивость поверхности головки стримера
-
О числе линейно упорядочиваемых бинарных отношений на конечном множестве
01.00.00 Физико-математические науки
Краткое описание
Понятие частично упорядоченного множества является фундаментальным для современной теоретико-множественной математики. Проблема линейного упорядочивания множеств с заданными на них бинарными отношениями широко известна. Всякий частичный порядок на конечном множестве линейно упорядочиваем, но не всякое бинарное отношение на этом множестве является линейно упорядочиваемым. До сих пор не известна формула для подсчета числа частичных порядков на данном конечном множестве. Оказывается, формула для подсчета бинарных линейно упорядочиваемых отношений на конечном множестве существует. Выводу этой формулы и посвящена настоящая статья. В ходе доказательства, существенную роль играет факт из работы Г.Н. Титова [9] о том, что бинарное отношение на конечном множестве линейно упорядоченно тогда и только тогда, когда любой диагональный блок матрицы, полученной из матрицы бинарного отношения в результате обнуления элементов главной диагонали, содержит хотя бы одну нулевую строку (под диагональным блоком матрицы мы понимаем всякую матрицу, составленную из элементов, стоящих на пересечении строк и столбцов данной матрицы с одинаковыми номерами). Основным результатом статьи является теорема, позволяющая по формуле найти число линейно упорядочиваемых бинарных отношений на множестве из n элементов. Также получена рекуррентная формула для числа линейно упорядочиваемых (иррефлексивных) бинарных отношений на конечном множестве из n элементов, которая приводится в лемме
-
01.00.00 Физико-математические науки
Краткое описание
В данной работе предложен прогноз трудовых ресурсов по отраслям экономики рынка труда Российской Федерации до 2018 года включительно. С помощью рассмотренной ранее модели [1-4] были рассчитаны вероятностные параметры динамики трудовых ресурсов, на основе которых были оценены и параметризированы тренды занятых и безработных (с известным последним местом занятости) специалистов по каждой отрасли. При верификации трендовых линий для каждой отрасли экономики РФ был подобран вид тренда, наилучшим образом аппроксимирующий долгосрочную (более трёх лет) динамику трудовых ресурсов в данной отрасли. При верификации показано, что погрешность прогноза на 1 год с помощью выбранных моделей тренда составляет менее 1%. В дальнейшем выявленные долгосрочные тенденции использовались при прогнозировании – было спрогнозировано количество занятых на конец 2017 и 2018 гг. По результатам прогноза отрасли экономики были разделены на две группы: с существенным изменением количества занятых в отрасли и без значимых изменений. На примере анализа двух отраслей из первой группы – «Обрабатывающие производства» и «Финансовая деятельность, операции с недвижимым имуществом, аренда и предоставление услуг» – рассмотрены причины установленных изменений динамики трудовых ресурсов
-
Моделирование плазмоида и стримеров в проводящей среде
01.00.00 Физико-математические науки
Краткое описание
В настоящей работе развита модель, описывающая формирование плазмоида и стримеров в проводящей среде. Для описания вклада токов проводимости мы модифицировали стандартное уравнение электростатики с учетом вихревой составляющей электрического поля. В результате такого обобщения сформулирована модель стримера в форме системы нелинейных уравнений параболического типа. Как известно, в лабораториях удается создавать плазмоид со временем жизни 300- 500 мс и диаметром 10-20 см, что интерпретируется как шаровая молния. При скоростной фотосъемке выявляется сложная структура, состоящая из плазмоида и окружающих его стримеров. В рамках предложенной модели поставлены задачи о формировании плазмоида и распространении стримеров во внешнем электрическом поле. В данной модели плазмоид рассматривается как долгоживущий стример. Указана область параметров, в которой формируется плазмоид сферической формы. Установлено, что существует три механизма ветвления стримера. Первый механизм связан с неустойчивость фронта, что приводит к разделению головки стримера на две части. Второй механизм связан с неустойчивостью стримера в области основания, что приводит к ветвлению стримера с образованием большого числа боковых стримеров, замыкающих основной канал стримера на катод. В численных экспериментах обнаружен третий механизм ветвления, наблюдавшийся в опытах, связанный с ветвлением плазмоида в области катода с замыканием объемного заряда на анод через систему стримеров. Обсуждаются сходство шаровой молнии и плазмоида. Если это сходство подтвердится, то число теоретических гипотез относительно природы шаровой молнии, которых в настоящее время более 200, может резко сократиться до одной, изложенной в настоящей работе
-
Моделирование шаровой молнии в проводящей среде
01.00.00 Физико-математические науки
Краткое описание
В настоящей работе развита модель, описывающая формирование стримеров, плазмоида и шаровой молнии в проводящей среде. Для описания вклада токов проводимости мы модифицировали стандартное уравнение электростатики с учетом вихревой составляющей электрического поля. В результате такого обобщения сформулирована система нелинейных уравнений параболического типа, описывающая формирование стримеров, плазменных долгоживущих образований и шаровых молний. Как известно, в лабораториях удается создавать плазмоид со временем жизни 300-500 мс и диаметром 10-20 см, что интерпретируется как шаровая молния. При скоростной фотосъемке выявляется сложная структура, состоящая из плазмоида и окружающих его стримеров. В рамках предложенной модели поставлены задачи о формировании плазмоида и распространении стримеров во внешнем электрическом поле. В данной модели плазмоид рассматривается как долгоживущий стример. Указана область параметров, в которой формируется плазмоид сферической формы. Установлено, что существует три механизма ветвления стримера. Первый механизм связан с неустойчивость фронта, что приводит к разделению головки стримера на две части. Второй механизм связан с неустойчивостью стримера в области основания, что приводит к ветвлению стримера с образованием большого числа боковых стримеров, замыкающих основной канал стримера на катод. В численных экспериментах обнаружен третий механизм ветвления, наблюдавшийся в опытах, связанный с ветвлением плазмоида в области катода с замыканием объемного заряда на анод через систему стримеров. Даны результаты моделирования эволюции шаровых скоплений в масштабе сотен миллисекунд. Обнаружены режимы перезарядки плазмоида ведущие к образованию положительного или отрицательного заряда системы
-
Частные случаи обратных матриц
01.00.00 Физико-математические науки
Краткое описание
Обратная матрица для квадратичной матрицы А порядка n с коэффициентами из некоторого поля существует, как известно, тогда и только тогда, когда ее определитель не равен нулю. Если матрица А имеет определенный вид (определенную структуру), то обратная матрица А - 1 совсем не обязана иметь ту же структуру. Поэтому представляет интерес описание таких квадратичных матриц А, у которых при определенных условиях существует обратная матрица А -1 , имеющая аналогичную структуру, что и матрица А. Например, нижняя треугольная матрица с ненулевыми элементами на главной диагонали имеет обратную матрицу над полем характеристики 0, имеющую также вид нижней треугольной матрицы. Аналогично, обратная матрица к симметрической или кососимметрической матрице также является соответственно симметрической или кососимметрической. Также матрица обратная к невырожденному циркуленту сама будет циркулянтом и наконец матрица обратная к невырожденной квазидиагональной матрице D сама будет квазидиагональной, причем имеет тоже клеточное строение, что и D. Таким образом, имеется проблема определения таких типов невырожденных матриц, которые имеют обратную матрицу того же типа, что и данная. В русле этой проблемы в данной работе определяется такой тип матриц, для которого обратная матрица тот же тип, при этом определяются условия в явном виде, обеспечивающие невырожденность матрицы. Подробно рассмотрены матрицы третьего порядков. Эти результаты позволяют определить характеристику полей, над которыми существуют обратные матрицы рассматриваемых типов
-
Обоснование применения электромагнитного поля при производстве подсолнечного масла
01.00.00 Физико-математические науки
Краткое описание
В ряде работ показана практическая возможность применения постоянных и переменных электромагнитных полей разной частоты и напряженности в технологии производства подсолнечного масла, однако отсутствует теоретическое обоснование. Возможность электромагнитного влияния связывают с наличием полярных молекул, характерных для органических систем. Не исключая роли полярных групп эфирной цепи, в данной работе сделана попытка рассмотреть эту задачу более всесторонне. Основанием для этого является отличительная особенность поведения подсолнуха в период его цветения. Эта особенность заключается в том, что шляпка подсолнуха в течение дня меняет свое направление в соответствии с направлением перемещения Солнца по небосводу, т.е. проявляется «магнетизм» их притяжения. Для обоснования этого эффекта анализируется сущность излучаемых Солнцем фотонов, химический состав и структура расположения семян на шляпке подсолнуха. Частицы света от Солнца представляют собой поток фотонов - электромагнитных волн широкого диапазона частот, проявляющих и магнитные свойства. Приводятся основные макро- и микроэлементы подсолнечного сырья и деление их на группы пара- , диа- , и ферромагнетиков. В семенах подсолнуха содержатся химические элементы: диамагнетики – C, H, N, P, S, B, Cu, Zn,, J; парамагнетики – O, K, Ca, Mg, Mo, As и ферромагнетик - железо (Fe). Так как проявляется результирующая сила магнитного притяжения между шляпкой подсолнуха и магнитным потоком фотонов от Солнца, то в этом эффекте преобладает действие парамагнетиков K2O (24,5-28,4)%, CaO (7,6 – 17,0)%, MgO (12,3 – 17,9)%, намагничивающихся во внешнем магнитном поле в направлении поля. Наличие проявляющегося эффекта свидетельствует о возможности совершенствования ряда технологических операций при производстве подсолнечного масла на основе применения электрических, магнитных или электромагнитных полей
-
Моделирование ступенчатого лидера молнии
01.00.00 Физико-математические науки
Краткое описание
В настоящей работе развита модель, описывающая формирование ступенчатого лидера молнии в проводящей среде. Для описания вклада токов проводимости мы модифицировали стандартное уравнение электростатики с учетом вихревой составляющей электрического поля. В результате такого обобщения сформулирована система нелинейных уравнений параболического типа, описывающая формирование стримеров и канала молнии. Численное моделирование распространения волн ионизации в области с отношением размеров 1/100, 1/200 позволяет выявить два типа ступенчатых лидеров в форме волн уплотнения и разрежения соответственно. Ранее было установлено, что существует три механизма ветвления стримера. Первый механизм связан с неустойчивостью фронта, что приводит к разделению головки стримера на две части. Второй механизм связан с неустойчивостью стримера в области основания, что приводит к ветвлению стримера с образованием большого числа боковых стримеров, замыкающих основной канал стримера на катод. В численных экспериментах обнаружен третий механизм ветвления, наблюдавшийся в опытах, связанный с замыканием объемного заряда на анод через систему стримеров. Указанные механизмы ветвления выявляются и при распространении лидера. Полученные результаты, а также данные численных экспериментов подтверждают гипотезу об универсальности минимальной модели стримера, а также ее расширения в форме, предложенной автором. Известные явления природы, связанные с электрическим разрядом – стример, плазмоид, шаровая молния и ступенчатый лидер могут быть описаны в рамках минимальной модели
-
Асимптотика оценок плотности распределения вероятностей
01.00.00 Физико-математические науки
Краткое описание
Непараметрические оценки плотности распределения вероятностей в пространствах произвольной природы - один из основных инструментов нечисловой статистики. Рассмотрены их частные случаи – ядерные оценки плотности в пространствах произвольной природы, гистограммные оценки и оценки типа Фикс- Ходжеса. Цель настоящей статьи - завершение цикла работ, посвященного математическому изучению асимптотических свойств различных видов непараметрических оценок плотности распределения вероятности в пространствах общей природы. Тем самым подводится математический фундамент под применения таких оценок в нечисловой статистике. Начинаем с рассмотрения среднего квадрата ошибки ядерной оценки плотности и - с целью максимизации порядка его убывания - выбор ядерной функции и последовательности показателей размытости. Основные понятия - круговая функция распределения и круговая плотность. Порядок сходимости в общем случае тот же, что и при оценивании плотности числовой случайной величины, но основные условия наложены не на плотность случайной величины, а на круговую плотность. Далее рассматриваем другие виды непараметрических оценок плотности - гистограммные оценки и оценки типа Фикс- Ходжеса. Затем изучаем непараметрические оценки регрессии и их применение для решения задач дискриминантного анализа в пространстве общей природы