08.00.13 Математические и инструментальные методы экономики (экономические науки)
-
Статистика нечисловых данных - центральная часть современной прикладной статистики
08.00.13 Математические и инструментальные методы экономики (экономические науки)
Краткое описание
В 1979 г. статистика нечисловых данных была выделена как самостоятельная область прикладной статистики. Первоначально для обозначения этой области математических методов экономики использовался термин "статистика объектов нечисловой природы". Наш базовый учебник по статистике нечисловых данных называется "Нечисловая статистика". Статистика нечисловых данных - одна из четырех основных областей прикладной статистики (наряду со статистикой чисел, многомерным статистическим анализом, статистикой временных рядов и случайных процессов). Статистика нечисловых данных делится на статистику в пространствах общей природы и разделы, посвященные конкретным типам нечисловых данных (статистика интервальных данных, статистика нечетких множеств, статистика бинарных отношений и др.). В настоящее время статистика в пространствах общей природы - центральная часть прикладной статистики, а включающая ее статистика нечисловых данных - основная область прикладной статистики. Это утверждение подтверждается, в частности, анализом публикаций в разделе "Математические методы исследования" журнала "Заводская лаборатория. Диагностика материалов" - основном месте публикаций отечественных исследований по прикладной статистике. Настоящая статья посвящена анализу основных идей статистики нечисловых данных на фоне развития прикладной статистики с позиций новой парадигмы математических методов исследования. Описаны различные виды нечисловых данных. Проанализирован исторический путь статистической науки. Рассказано о развитии статистики нечисловых данных. Разобраны основные идеи статистики в пространствах общей природы: средние величины, законы больших чисел, экстремальные статистические задачи, непараметрические оценки плотности распределения вероятностей, методы классификации (диагностики и кластер-анализа), статистики интегрального типа. Кратко рассмотрены некоторые статистические методы анализа данных, лежащих в конкретных пространствах нечисловой природы: непараметрическая статистика (реальные распределения обычно существенно отличаются от нормальных), статистика нечетких множеств, теория экспертных оценок (медиана Кемени - это выборочное среднее экспертных упорядочений) и др. Обсуждаются некоторые нерешенные задачи статистики нечисловых данных
-
08.00.13 Математические и инструментальные методы экономики (экономические науки)
Краткое описание
В статье рассмотрен подход к управлению производственным процессом в сельском хозяйстве на основе моделирования и оценки цепочек создания добавленной стоимости. Предложена схема звеньев производственной цепи создания добавленной стоимости, содержащую источник управления и финансирования, денежный поток от которого поступает сначала в звено агропроизводства, затем выработанная продукция поступает в накопитель, а из него последовательно проходит звенья цепочки добавленной стоимости циклического перерабатывающего производства, из которого готовая продукция переработки поступает на рынок, а полученная выручка направляется в источник финансирования и управления. Даны математические описания движения финансовых и материальных потоков в звеньях разработанной цепи добавленной стоимости, предложены математические модели для расчета объемов материальных и финансовых потоков. Исследованы также финансовые потоки для компенсации затрат на преобразование материальных потоков и их математические описания. Получена математическая модель экономической эффективности производственного процесса и предложена математическая модель расчета минимальной цены на социально значимую продукцию переработки
-
Стратегическое планирование и управление холдингом на основе информационных и когнитивных технологий
08.00.13 Математические и инструментальные методы экономики (экономические науки)
Краткое описание
В статье методология стратегического планирования и управления холдингом развивается на теоретической основе автоматизированного системно-когнитивного анализа (АСК-анализ). Эта методология обеспечивает научное исследование любого холдинга путем создания и исследования его модели. Методология включает как синтез, адаптацию и верификацию системно-когнитивных моделей холдинга, так и использование этих моделей для стратегического планирования и поддержки принятия решений по управлению холдингом, как сложной, многопараметрической, нелинейной системой. Актуальность исследования обусловлена особой ролью холдингов и других корпоративных интегрированных структур как в России в целом, так и, в частности, в Краснодарском крае. Несмотря на очевидные системные преимущества, холдинги сталкиваются с широким кругом проблем, связанных с эффективностью управления, обеспечением их устойчивого функционирования и др. Предлагаемая методология предлагает пути решения этих проблем и может быть успешно применена в холдингах и других корпоративных интегрированных структурах различных регионов, объемов и направленностей деятельности, что и определяет актуальность темы исследования. Уровень значимости и научная новизна Исследования состоят в разработке концептуальных и теоретико-методологических положений, направленных на управление развитием холдингов. Ожидаемые результаты и их значимость заключаются в том, что разработанная в результате реализации Исследования методология может быть применена холдингами и другими корпоративными интегрированными структурами и обеспечит существенное повышение качества управления ими
-
Система моделей и методов проверки однородности двух независимых выборок
08.00.13 Математические и инструментальные методы экономики (экономические науки)
Краткое описание
Новая парадигма математических методов исследования позволяет дать системный анализ различных постановок задач анализа статистических данных и методов их решения, основанных на принятой исследователем той или иной вероятностно-статистической модели порождения данных. Методы проверки однородности двух независимых выборок - классическая область математической статистики. За более чем 111 лет с момента публикации основополагающей статьи Стьюдента разработаны критерии проверки статистической гипотезы однородности в различных постановках, изучены их свойства. Однако актуальна потребность в упорядочении совокупности найденных научных результатов. Необходим анализ всего многообразия постановок задач проверки статистических гипотез однородности двух независимых выборок, а также соответствующих статистических критериев. Такому анализу посвящена настоящая статья. Дана сводка основных результатов, касающихся методов проверки однородности двух независимых выборок, и проведено их сравнительное изучение, позволяющие системно анализировать многообразие таких методов с целью выбора наиболее адекватного для обработки конкретных данных. На основе базовой вероятностно-статистической модели сформулированы основные постановки задачи проверки однородности двух независимых выборок. Дан сравнительный анализ критериев Стьюдента и Крамера - Уэлча, предназначенных для проверки однородности математических ожиданий, обоснована рекомендация по широкому применению критерия Крамера - Уэлча. Из непараметрические методов проверки однородности рассмотрены критерии Вилкоксона, Смирнова, Лемана - Розенблатта. Разобраны два мифа о критерии Вилкоксона. На основе анализа публикаций основоположников показана некорректность термина "критерий Колмогорова - Смирнова". Для проверки абсолютной однородности, т.е. совпадения функций распределения выборок, рекомендовано использовать критерий Лемана - Розенблатта. Обсуждаются актуальные проблемы разработки и применения непараметрических критериев, в том числе различие номинальных и реальных уровней значимости, затрудняющее сравнение критериев по мощности, и необходимость учета совпадений выборочных значений (с точки зрения классической теории математической статистики вероятность совпадений равна 0)
-
08.00.13 Математические и инструментальные методы экономики (экономические науки)
Краткое описание
В статье методология стратегического планирования и управления холдингом развивается на теоретической основе автоматизированного системно-когнитивного анализа (АСК-анализ). Эта методология обеспечивает научное исследование любого холдинга путем создания и исследования его модели. Методология включает как синтез, адаптацию и верификацию системно-когнитивных моделей холдинга, так и использование этих моделей для стратегического планирования и поддержки принятия решений по управлению холдингом, как сложной, многопараметрической, нелинейной системой. Актуальность исследования обусловлена особой ролью холдингов и других корпоративных интегрированных структур как в России в целом, так и, в частности, в Краснодарском крае. Несмотря на очевидные системные преимущества, холдинги сталкиваются с широким кругом проблем, связанных с эффективностью управления, обеспечением их устойчивого функционирования и др. Предлагаемая методология предлагает пути решения этих проблем и может быть успешно применена в холдингах и других корпоративных интегрированных структурах различных регионов, объемов и направленностей деятельности, что и определяет актуальность темы исследования. Уровень значимости и научная новизна Исследования состоят в разработке концептуальных и теоретико-методологических положений, направленных на управление развитием холдингов. Ожидаемые результаты и их значимость заключаются в том, что разработанная в результате реализации Исследования методология может быть применена холдингами и другими корпоративными интегрированными структурами и обеспечит существенное повышение качества управления ими
-
Метод ценообразования на основе оценивания функции спроса
08.00.13 Математические и инструментальные методы экономики (экономические науки)
Краткое описание
При решении некоторых задач экономики и управления на предприятии возникает необходимость определения розничной цены товара или услуги при известной оптовой цене или цене производителя. Предлагаем определять розничную цену на основе анализа данных опроса потенциальных потребителей о максимально возможной для них цене на рассматриваемый товар или услугу. Розничную цену рассчитываем на основе оптимизации экономического эффекта, равного произведению результата от продажи одной единицы товара на функцию спроса, которую оцениваем путем опроса потребителей. Для решения оптимизационной задачи функцию спроса приближаем с помощью метода наименьших квадратов. Как примеры проанализированы линейная и степенная модели функции спроса. Обсуждаются пути дальнейшего развития предложенного подхода. Сформулированы нерешенные научные задачи. Требуют дальнейшей проработки методы оценивания функции спроса в условиях большого количества повторов в ответах респондентов и их склонности к "круглым цифрам", вследствие чего нельзя пользоваться критерием Колмогорова для определения точности восстановления функции спроса. Различные параметрические и непараметрические подходы регрессионного анализа должны быть адаптированы к рассматриваемой задаче восстановления зависимости спроса от цены, равно как и методы решения соответствующих оптимизационных задач
-
08.00.13 Математические и инструментальные методы экономики (экономические науки)
Краткое описание
В современной экономической теории нет законченной классификации инновационных подходов к управлению наукоемкими и высокотехнологичными компаниями и предприятиями. Среди таких подходов можно особо выделить ситуационный, структурный, процессный, функциональный и проектный. Проектно-ориентированный подход, как целенаправленный метод формирования будущих систем, является своеобразным продолжением процессного подхода, однако, в нем приоритет отдается не процессу, а проекту, как основной производственной, инновационной и конкурирующей бизнес-единице. В статье дан краткий обзор научных исследований, выполненных в данной предметной области, проанализированы достоинства и возможности существующих моделей обоснованности управления проектами, предложен авторский подход к построению модели выявления и оценки потенциальных возможностей современных проектно-ориентированных компаний и предприятий. Показано, что экономическая эффективность таких компаний и предприятий достигается за счет использования ими проектного метода как в комплексной системе стратегического управления, так и в основной производственной деятельности. Это ведет к возрастанию их способностей к оперативному и быстрому принятию правильных управленческих решений, способствует установке передового технологического и технического оборудования, ускорению ввода в действие новых производственных мощностей
-
Основные требования к методам анализа данных (на примере задач классификации)
08.00.13 Математические и инструментальные методы экономики (экономические науки)
Краткое описание
Назрела необходимость навести порядок в методах классификации. Это повысит их роль в решении прикладных задач, в частности, при диагностике материалов. Для этого прежде всего следует выработать требования, которым должны удовлетворять методы классификации. Первоначальная формулировка таких требований - основное содержание настоящей работы. Математические методы классификации рассматриваются как часть методов прикладной статистики. Обсуждаются естественные требования к рассматриваемым методам анализа данных и представлению результатов расчетов, вытекающие из накопленных отечественной вероятностно-статистической научной школой достижений и идей. Даются конкретные рекомендации по ряду вопросов, а также критика отдельных ошибок. В частности, методы анализа данных должны быть инвариантны относительно допустимых преобразований шкал, в которых измерены данные, т.е. методы должны быть адекватны в смысле теории измерений. Основой конкретного статистического метода анализа данных всегда является та или иная вероятностная модель. Она должна быть явно описана, ее предпосылки обоснованы - либо из теоретических соображений, либо экспериментально. Методы обработки данных, предназначенные для использования в реальных задачах, должны быть исследованы на устойчивость относительно допустимых отклонений исходных данных и предпосылок модели. Должна указываться точность решений, даваемых с помощью используемого метода. При публикации результатов статистического анализа реальных данных необходимо указывать их точность (доверительные интервалы). В качестве оценки прогностической силы алгоритма классификации вместо доли правильных прогнозов рекомендуется использовать прогностическую силу. Математические методы исследования делятся на "разведочный анализ" и "доказательную статистику". Специфические требования к методам обработки данных возникают в связи с их "стыковкой" при последовательном выполнении. Обсуждаются границы применимости вероятностно-статистических методов. Рассматриваются также конкретные постановки задач классификации и типовые ошибки при применении различных методов их решения
-
08.00.13 Математические и инструментальные методы экономики (экономические науки)
Краткое описание
Традиционно, управляющие решения принимаются путем многократного решения задачи прогнозирования при различных значениях управляющих факторов и выбора такого их сочетания, которое обеспечивает перевод объекта управления в целевое состояние. Однако на реальные объекты управления действуют сотни и тысячи управляющих факторов, каждый из которых может иметь десятки значений. Полный перебор всех возможных сочетаний значений управляющих факторов приводит к необходимости решения задачи прогнозирования десятки и сотни тысяч и даже миллионы раз для принятия одного решения, и это является совершенно неприемлемым на практике. Поэтому необходим метод принятия решений не требующий значительных вычислительных ресурсов. Таким образом, налицо противоречие между фактическими и желаемым, в чем и состоит проблема, решаемая в работе. В данной работе предлагается развитый алгоритм принятия решений путем однократного решения обратной задачи прогнозирования (автоматизированный SWOT-анализ), использующий результаты кластерно-конструктивного анализа целевых состояний объекта управления и значений факторов и однократного решения задачи прогнозирования. Этим и обуславливается актуальность темы работы. Цель работы состоит в решении поставленной проблемы. Путем декомпозиции цели сформулированы следующие задачи, являющиеся этапами достижения цели. Когнитивно-целевая структуризация предметной области; формализация предметной области (разработка классификационных и описательных шкал и градаций и формирование обучающей выборки); синтез, верификация и повышение достоверности модели объекта управления; прогнозирование, принятие решений и исследование объекта управления путем исследования его модели. В качестве метода решения поставленных задач применяется автоматизированный системно-когнитивный анализ и его программный инструментарий – интеллектуальная система «Эйдос». В результате работы предложен развитый алгоритм приятия решений, применимый в интеллектуальных системах управления. Основной вывод по результатам работы состоит в том, что предлагаемый подход позволил успешно решить поставленную проблему
-
Модели трансферта технологий между оборонным и гражданским сектором экономики
08.00.13 Математические и инструментальные методы экономики (экономические науки)
Краткое описание
В статье рассмотрена проблема повышения эффективности бюджетных расходов за счет передачи военных технологий в гражданский сектор экономики. Анализ зарубежного опыта показал, что частные компании широко привлекаются рядом государств для решения части инфраструктурных задач в военной сфере. В США, частные компании обеспечивают связь и оказывают другие информационные услуги силовым государственным структурам, что дает возможность развития частного бизнеса с одной стороны и экономию бюджетных расходов с другой. Анализ отечественного опыта показал, что использование военных технологий для производства гражданской продукции и услуг в ряде случаев, позволяет значительно экономить время и другие ресурсы. Разработана модель взаимодействия гражданских компаний с оборонным комплексом и модель диффузии военных технологий. Предложено создание новых структур, решающих задачи адаптации военных технологий к требованиям гражданских заказчиков, а также базы данных адаптированных технологий и технического инвестиционного центра, оказывающего поддержку предприятиям малого и среднего бизнеса в приобретении оборудования и технической документации. Авторы считают, что предложенные в статье подходы к решению проблемы трансферта технологий позволят стимулировать инновационную активность в стране, снизят импортозависимость и повысят эффективность бюджетных расходов