
name
Dmitrenko Dmitriy Valeryevich
Scholastic degree
—
Academic rank
—
Honorary rank
—
Organization, job position
• Kuban State Technological University
Research interests
Web site url
—
—
Current rating (overall rating of articles)
0
TOP5 co-authors
Articles count: 3
Сформировать список работ, опубликованных в Научном журнале КубГАУ
-
MECHANICAL GRINDING OF SOLID POWDER MATERIALS
Description
The article is dedicated to the determination of conditions for solid bodies’ fragmentation, providing minimal size of particles by means of their mechanical dispersion through the example of powders of titanium carbide (TiC), cubic boron nitride – borazon (CBN) and boron carbide (B4C). The theoretical and practical aspects of the process of mechanical fragmentation of particles of solid powder materials in ball mill for their further utilization in furnace charge for high-speed gas-flame sputtering of wear-resistant composite materials are examined in the article. Methods of preliminary calculation of minimum allowable size of solid particles of powder materials during mechanical fragmentation, based upon Griffiths’ mechanical theory of rapture using experimental data for hardness of material and its yield are proposed and theoretically substantiated. There we have the results of experiments on mechanical fragmentation of titanium carbide in attritor, boron carbide and cubic boron nitride in centrifugal planetary mill, confirming correctness of theoretical propositions and calculations are set out. Recommendations on mechanical fragmentation of solid powder materials in ball mills are formulated as well
-
Description
In the article the technology of obtaining carbide steel with hot punching porous billets produced by shock compaction, based on no form powders is described, the structure and properties of the obtained composite material are studied, the parts with enhanced mechanical properties are presented
-
Description
The mechanical activation allows creating a active state in a solid, opening the prospect for holding and accelerating the chemical reactions between solids and getting materials in a nonequilibrium state. As a result of mechanical activation of the powder compositions of the active phase transformations occur in them, which lead to the formation of solid solutions and various intermediate connections, providing dispersion and dispersion hardening of materials included in the composition. The results of the study of the granulometric composition, the phase transformations and structure evolution in multiphase materials with SME Ni-30%at.Ti-20%at.Hf and Ni-33%at.Ti- 18%at.Zr at different stages of the process of mechanical activation carried out in planetary ball mill the centrifugal type is represented in the article. During mechanical activation, a composite mix is assimilated by the particles of processed material input of mechanical energy in the form of new interfaces, defects of the crystal lattice. At collision of particles and grinding bodies in contact high local temperature and pressure occur, which in some cases can lead to melting of the most fusible components. When a local increase in temperature between the particles of titanium, hafnium, zirconium and carbon solid-phase reactions become possible due to diffusion of atoms of one component into the crystal lattice of the other. Experimental studies have shown that the use of mechanical activation allows creating an effective technology of preparation of the starting material for high-speed flame spraying