A&E Trounev IT Consulting, Toronto, Canada
Author list of organization
List of articles written by the authors of the organization
-
SIMULATION OF A PLASMA CHANNEL AND TRACK IN MOTION OF PLASMA SOURCE IN CONDUCTIVE ENVIRONMENT
01.00.00 Physical-mathematical sciences
Description
A model is developed that describes the formation of the plasma channel and the trace when moving in a conducting medium of various objects that are sources of plasma - ball lightning, plasmoids, charged particles, and so on. To describe the contribution of conduction currents, we modified the standard electrostatic equation considering the vortex component of the electric field. As a result of this generalization, a system of parabolictype nonlinear equations is formulated that describes the formation of the plasma channel and the track behind the moving object. In this formulation, the problem of the formation of the lightning channel in weak electric fields, characteristic for atmospheric discharges of cloudearth, is solved. Numerical simulation of the motion of plasma sources in a region with a ratio of the sizes 1/100, 1/200 makes it possible to find the shape of the channel and the total length of the track, as well as the branching regimes. It was previously established that there are three streamer branching mechanisms. The first mechanism is associated with the instability of the front, which leads to the separation of the head of the streamer into two parts. The second mechanism is related to the instability of the streamer in the base region, which leads to the branching of the streamer with the formation of a large number of lateral streamers closing the main channel of the streamer to the cathode. The third branching mechanism, observed in experiments, is associated with the closure of the space charge to the anode through the streamer system. These branching mechanisms are also revealed when the leader is spread. Numerical experiments have revealed a new channel branching mechanism and a trace behind a moving plasma object, caused by the conductivity of the medium
-
LOGARITHMIC LAW AND EMERGENCE PARAMETER OF CLASSICAL AND QUANTUM SYSTEMS
01.00.00 Physical-mathematical sciences
Description
The work discusses various examples of physical systems which state is determined by the logarithmic law - quantum and classical statistical systems and relativistic motion in multidimensional spaces. It was established that the Fermi-Dirac statistics and BoseEinstein-Maxwell-Boltzmann distribution could be described by a single equation, which follows from Einstein's equations for systems with central symmetry. We have built the rate of emergence of classical and quantum systems. The interrelation between statistical and dynamic parameters in supergravity theory in spaces of arbitrary dimension was established. It is shown that the description of the motion of a large number of particles can be reduced to the problem of motion on a hypersphere. Radial motion in this model is reduced to the known distributions of quantum and classical statistics. The model of angular movement is reduced to a system of nonlinear equations describing the interaction of a test particle with sources logarithmic type. The HamiltonJacobi equation was integrated under the most general assumptions in the case of centrally-symmetric metric. The dependence of actions on the system parameters and metrics was found out. It is shown that in the case of fermions the action reaches extremum in fourdimensional space. In the case of bosons there is a local extremum of action in spaces of any dimension
-
01.00.00 Physical-mathematical sciences
Description
In the study we consider the problem of determining the motion and similarity parameter to the system of worlds in a Riemannian space 112D with a common field of gravity. Centrally symmetric metric, depending on the 110 angle coordinates and the radial coordinate and time was investigated. It is assumed that there are intelligent beings in every world, striving for self-knowledge. By virtue of the presence of the world hierarchy in one of them there is a system of complete identification of each characteristic of the individual being with macroparameters his world. If sentient beings in all the world to create a device to simulate their own history in the form of a network of computers using the available material and the physical laws of his world, and the loss of information when displaying one world to another is 1%, then 37- th world played only 68.9449%. For Earthlings, it was found that the average similarity parameter of professional group in recognition by using astronomical parameters is 68.75%. Therefore, we can assume that the world system, including Earth, contains 37 "floors." Assuming that each "floor" takes three space dimensions, and all the "floors" connected by a single time, we find here that the number of dimensions of space-time of the whole system is 112. In the article the angular motion in a Riemannian space is considered. The effect of the separate worlds on other worlds is simulated. It has been shown that the physical laws in all worlds represent a single movement covering the markers in the form of the motion of atoms and elementary particles in a gravitational field in the 112D
-
VORTEX TURBULENT FLOWS IN ATMOSPHERES OF PLANETS AND ON THE SUN
01.00.00 Physical-mathematical sciences
Description
In this work, we consider two types of vortex currents-cyclones and anticyclones in the Northern and Southern Hemispheres. Numerical modeling of turbulent flows of these types uses the model of the planetary boundary layer developed by the author. The purpose of the study is to test hypotheses about the influence of the Coriolis force on the formation of cyclones and anticyclones in the northern and southern latitudes. The first hypothesis on the direction of circulation in cyclones was verified in the case of axisymmetric radially converging and vertically rising turbulent flows with a natural Coriolis parameter and viscosity. From the obtained data of numerical experiments, it follows that the current in the northern latitudes circulates in a counter clockwise direction, and in the south - in a clockwise direction, in full accordance with the observational data. Thus, we have shown that a cyclonic flow is formed in a turbulent radially converging flow under the influence of the Coriolis force. The second hypothesis on the formation of anticyclones was verified in the case of radially divergent and vertically descending turbulent flows. Because of numerical experiments, it was established that in this case, the current in the northern latitudes circulates clockwise, and in the south - in a counter clockwise direction, which corresponds to observations for anticyclones. To test the effect of the cyclone (anticyclone) center velocity on circulation, a nonstationary 3D model of turbulent flow was developed. Within the framework of this model, flows in cyclones and anticyclones moving at a constant speed, as well as in shear flow, are studied. Some types of loop protuberances on the Sun are explained by the presence of a vortex turbulent flow starting in the bowels of the Sun and encompassing the chromosphere
-
DYNAMICS OF RELATIVISTIC PARTICLES IN THE RING AND SPIRAL GALAXY METRIC
01.00.00 Physical-mathematical sciences
Description
In this work, we examine the dynamics of relativistic particles in the ring or spiral galaxy metric in general relativity. On the basis of the solution of Einstein's equations we have derived metric having axial symmetry, comprising N centers of gravity and a logarithmic singularity. The application received metrics to describe the motion of particles in a spiral and ring galaxy. On the basis of Einstein's equations solutions for vacuum we are explained rotation of matter in spiral galaxies. An expression for gravitation potential in the inner region of spiral galaxies in agreement with experimental data on the rotation of the CO and hydrogen is described. It is established that in the metric with N centers of gravity which are distributed on the circumference, exist as a local motion near the center of gravity, and motion around N gravity center as well. The transition from one mode of motion to another is determined by the initial distance to the circle on which the distributed centers of gravity. A system of non-linear parabolic equations describing the evolution of the metric in the Ricci flow proposed. The boundary problem for the gravitational potentials in the Ricci flow was formulated. There are applications of the theory to describe a spiral and ring galaxy
-
01.00.00 Physical-mathematical sciences
Description
The article deals with the solution of the NavierStokes equations describing turbulent flows over rough surfaces. It is known, that there is a mechanism of turbulent mixing in natural systems, leading to an increase in the viscosity of the continuous medium. In this regard, we suggest methods of regularization of the Navier-Stokes equations, similar to the natural mechanisms of mixing. It is shown, that in threedimensional flows over a rough surface turbulent viscosity increases proportionally to the square of the distance from the wall. The models of the flow, taking into account the properties of the turbulent environment are considered. A modification of the continuity equation taking into account the limiting magnitude of pressure fluctuations is proposed. It is shown, that due to the pressure pulsation, the incompressibility condition may be violated even for flows with low Mach numbers. Modification of the continuity equation taking into account turbulent fluctuations leads to a system of nonlinear equations of parabolic type. Modification of continuity equation in the system of Navier-Stokes by the introduction of turbulent viscosity allows the regularization of the Navier-Stokes equations to solve the problems with rapidly changing dynamic parameters. The main result of which is obtained by numerical simulation of the modified system of equations is the stability of the numerical algorithm at a large Reynolds number, which can be explained, first, a system of parabolic type, and a large quantity of turbulent viscosity. A numerical model of flow around plates with the rapid change in angle of attack has been verified. We have discovered the type of instability of the turbulent boundary layer associated with the rapid changes in dynamic parameters. It is shown, that the fluctuations of the boundary layer to cause generation of sound at a frequency of 100 Hz to 1 kHz
-
THE UNIFIED FIELD THEORY AND SUPERGRAVITY IN 112D
01.00.00 Physical-mathematical sciences
Description
In the paper the problem of constructing a unified field theory based on the theory of supergravity in the 112D is discussed. It is assumed that in the 112-dimensional Riemann space there are 37 three-dimensional worlds coexist having a single time and associated gravity. Investigated centrally symmetric metric depends on the radial coordinate in the observable physical space of one of the worlds. It is assumed that in the 112D performed the wave equation of the general form, describing the dynamics of the scalar field. From this equation, the wave equation is displayed in the fourdimensional space-time, containing terms describing the contribution of extra dimensions. It is shown that the quantum numbers of the problem allow us to describe the structure of the atom and the atomic nucleus on the assumption that given the total mass of the central body. The problem on the dynamics of the scalar field in the 112D in a centrally symmetric metric has been described. Built of field quantization theory in general, and in the particular case of metrics depending on the Weierstrass elliptic functions. It is shown that in this case there are bounded periodic potentials and corresponding periodic solutions that depend on the energy and angular momentum projection, and on the invariants of the Weierstrass function. It is found that in an excited state with a sufficiently large magnitude of the angular momentum of the projection portion of the radial wave function is periodic in a limited range, while the ground state allowed waves on all axes of the radial coordinate. The connection of the solutions to the Yang-Mills theories discussed
-
DYNAMICS OF THE GEOMAGNETIC FIELD AND SUPERGRAVITY IN 112D
01.00.00 Physical-mathematical sciences
Description
The paper deals with the problem of changing the polarity of the geomagnetic field as a problem of a unified field theory and supergravity in the 112D. Investigated centrally symmetric metric depends on the radial coordinate in the observable physical space of one of the worlds. The equation that relates the magnetic field of the planet with a gravitational field in 5D has been derived. The problem of changing the polarity of the magnetic field of the Earth discussed. The rapid change of the geomagnetic field polarity detected on the basis of paleomagnetic data is modeled as a movement on a hypersphere in the 112D, which corresponds to 110 corners. The simplest example of such a movement in the case of the three angles is the Euler model that describes the rigid body rotation. In this model, there are modes with a quick flip of the body while conservation of the angular momentum. If the body has a magnetic moment, when such a change occurs flip of the magnetic field. It is assumed that the central core of the earth is magnetized and surrounded by a number of satellites, each of which has a magnetic moment. Satellites interact with a central core and one another by means of gravity and through a magnetic field. The central core may sudden flip, as in the Euler model. It is shown that the duration of phase with constant polarity and upheaval time depends on the magnitude of the disturbance torque and core asymmetry. We discuss Einstein's hypothesis about the origin of the magnetic field when rotating the neutral masses. It is shown that the motion on a hypersphere in the 112D has the effect of a magnetic field due to the interaction of nucleons in nuclei. Such magnetic field is most evident for iron, cobalt and nickel - elements are consisting of the Earth's core
-
01.00.00 Physical-mathematical sciences
Description
Metric describing the accelerated and rotating reference system in general relativity in the case of an arbitrary dependence of acceleration and angular velocity on time has been proposed. It is established that the curvature tensor in such metrics is zero, which corresponds to movement in the flat spaces. It is shown that the motion of test bodies in the metric accelerated and rotating reference system in general relativity is similarly to the classical motion in non-inertial reference frame. Maxwell's equations and Yang-Mills theory are converted to the moving axes in metric describes the acceleration and rotating reference frame in the general relativity in the case of an arbitrary dependence of acceleration and angular velocity of the system from time. The article discusses the known effects associated with acceleration and (or) the rotation of the reference frame - the Sagnac effect, the effect of the Stewart-Tolman and other similar effects. The numerical model of wave propagation in non-inertial reference frames in the case when potential depending of one, two and three spatial dimensions has been developed. It has been shown in numerical experiment that the acceleration of the reference system leads to retardation effects, as well as to a violation of the symmetry of the wave front, indicating that there is local change of wave speed
-
DYNAMICS OF RELATIVISTIC PARTICLES IN THE GALAXY METRIC
01.00.00 Physical-mathematical sciences
Description
In this study we investigate the dynamics of relativistic particles in the axially symmetric metrics. We have built metric having axial symmetry and contains two centers of gravity and a logarithmic singularity. The application received metrics to the movement of particles in galaxies is described. It is established that there are stable orbit in the metric with two centers of gravity, the particle velocity at which reaches the value v/ c ≈ 7.0 . Orbit radius varies widely, but remains substantially flat orbit. Unstable same movements are completed so that the particles leave the system. The hypothesis that this kind of relativistic objects can serve as sources of the magnetic fields of the planets, stars and galaxies has been proposed. The question of the realization in the galaxy metric of Einstein's hypothetical elevator in which there is a uniform gravitational field, simulating the accelerated movement of the elevator is described. A homogeneous gravitational field in a limited region of space was numerical simulated. It has been shown that this kind of accelerated objects generate relativistic effect in the form of a log potential, not diminishing with distance from the center of the system. It is assumed that such capabilities can be associated with the Higgs field responsible for the occurrence of the inertial mass of the elementary particles