
Ф.И.О.
Луценко Евгений Вениаминович
Ученая степень
• доктор экономических наук
Ученое звание
профессор
Почетное звание
—
Организация, должность
• Кубанский государственный аграрный университет
кафедра компьютерных технологий и систем
профессор
Научные интересы
Системно-когнитивный анализ, системы искусственного интеллекта, высшие формы сознания, перспективы человека, технологии и общества
Адрес веб-сайта
Электропочта
Текущий рейтинг (суммарный рейтинг статей)
0
TOP5 соавторов
Статей в журнале: 272 шт
Сформировать список работ, опубликованных в Научном журнале КубГАУ
-
06.02.00 Ветеринария и Зоотехния
Краткое описание
14 января 2019 года на сайте ВАК РФ http://vak.ed.gov.ru/87 появилась информация: « Об уточнении научных специальностей и соответствующих им отраслей науки, по которым издания входят в Перечень рецензируемых научных изданий, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученой степени кандидата наук, на соискание ученой степени доктора наук». Сообщается, что согласно рекомендации ВАК для остальных изданий, входящих в Перечень по группам научных специальностей, работа по уточнению научных специальностей и отраслей науки будет продолжена в 2019 году. Данная работа является продолжением серии работ автора по когнитивной лингвистике. В ней предлагается инновационная интеллектуальная технология для автоматизации решения задачи, сформулированной ВАК РФ выше. С применением автоматизированного системно-когнитивного анализа (АСК-анализ) и его программного инструментария – интеллектуальной системы «Эйдос» непосредственно на основе официальных текстов паспортов научных специальностей ВАК РФ созданы их семантические ядра, а затем реализована автоматическая классификация научных текстов (статей, монографий, учебных пособий и т.д.) по специальностям и группам специальностей ВАК РФ. Традиционно эта задача решается диссертационными советами, а также редакционными советами научных изданий, т.е. экспертами, на основе экспертных оценок, неформализованным путем, на основе опыта, интуиции и профессиональной компетенции. Однако, традиционный подход имеет ряд довольно серьезных недостатков, накладывающих на качество и объемы анализа существенные ограничения. Следовательно, актуальными является усилия исследователей и разработчиков по преодолению этих ограничений. В настоящее время уже есть все основания рассматривать эти ограничения как неприемлемые, т.к. их не только нужно, но и вполне возможно преодолеть. Таким образом, налицо проблема, решение которой и являются предметом рассмотрения в данной статье. Приводится развернутый численный пример решения поставленной проблемы на реальных данных
-
Краткое описание
В работе в общем виде сформулирована проблема эффективного прогнозировании результатов и принятии управленческих решений по выбору агротехнологий, обеспечивающих желаемый результат. Предложена и обоснована возможность прогнозирования и управления в зерновом производстве путем применения технологий искусственного интеллекта, в частности, метода системно-когнитивного анализа
-
Краткое описание
В данной статье впервые осуществлен синтез и верификация системно-когнитивной модели природно-экономической системы, обоснована возможность прогнозирования и принятия управленческих решений по выбору агротехнологий
-
Краткое описание
Проведено исследование системно-когнитивной модели для прогнозирования и поддержки принятия управленческих решений по выбору агротехнологий производства зерна, обеспечивающих с высокой вероятностью желаемый хозяйственный, энергетический, финансово-экономический результат
-
Краткое описание
В работе осуществлено прогнозирование и принятие управленческих решений по выбору агротехнологий посредством применения метода системно-когнитивного анализа
-
Краткое описание
В статье описаны синтез и верификация статистических и системно-когнитивных моделей влияния экологических факторов на качество жизни населения региона. Этот этап АСК-анализа выполняется в системе «Эйдос». В результате создаются и проверяются на достоверность (верифицируются) все заданные системно - когнитивные модели. Ожидается, что достоверность моделей знаний будет достаточно высока для данной предметной области, на основе чего можно будет говорить об обнаружении определенной зависимости продолжительности жизни и причин смерти от экологической обстановки. Обычно модели знаний имеют примерно на 20% более высокую достоверность, чем статистические модели, которые работают по принципу положительного псевдопрогноза. На основе модели Abs (матрица абсолютных частот) принимать решения не целесообразно из-за разного количества примеров по классам (обобщенным категориям) и зависимости решений от этого количества. В модели Prc2 (условные и безусловные процентные распределения) зависимость представленных в модели значений от числа примеров по классам снята, но достоверность у нее обычно такая же низкая, как у Abs. Кроме того, для принятия решений на основе этой модели, необходимо вручную сравнивать значения условных и безусловных вероятностей, что трудоемко, и едва ли возможно при больших размерностях моделей. Модель знаний Inf3, основанная на мере, сходной с хи-квадрат, получается в результате автоматизированного сравнения значения условных и безусловных вероятностей, представленных в модели Prc1, сходной с Prc2, и обычно имеет довольно высокую достоверность, особенно если учесть высокую сложность предметной области, которую мы моделируем. Поэтому, в соответствии с технологией АСК-анализа преобразования данных в информацию, а ее - в знания, именно модель Inf3 планируется использовать для решения задач идентификации, прогнозирования, принятия решений и исследования моделируемой предметной области, путем исследования ее модели
-
Краткое описание
В данной статье в соответствии с методологией СК-анализа рассматривается вариант конкретной реализации этапов синтеза численной модели и ее анализа. Приводятся результаты исследования системы детерминации различных состояний перерабатывающего комплекса, функции влияния различных факторов на эти состояния и их классификация, а также семантические сети и когнитивные диаграммы классов и факторов. На основе проведенного анализа делаются конкретные выводы и даются рекомендации по принятию решений на уровне руководства региона. После выполнения этапов когнитивной структуризации и формализации предметной области выполняются последующие этапы автоматизированного СК-анализа, первым из которых является этап ввода базы прецедентов. Все эти этапы выполняются непосредственно с применением универсальной когнитивной аналитической системы «Эйдос»
-
Краткое описание
В статье предлагается применить автоматизированный системно-когнитивный анализ (АСК- анализ) и его программный инструментарий систему «Эйдос» для решения задач многопараметрической типизации, системной идентификации и картографической визуализации пространственно- распределенных природных, экологических и социально-экономических систем. Пусть есть исходное облако точек с координатами (X,Y,Z), для каждой из которых известны значения градаций описательных шкал номинального, порядкового или числового типа S(s1,s2,…,sn). Тогда система «Эйдос» обеспечивает: 1) построение модели, содержащей обобщенные знания о силе и направлении влиянии градаций описательных шкал на значения Z=M(S); 2) оценку значения Z для точек (X,Y), описанных в тех же описательных шкалах S(s1,s2,…,sn), но не входящих в исходное облако точек; 3) картографическую визуализацию пространственного распределения значений функции Z=M(S) для точек, не входящих в исходное облако, с использованием триангуляции Делоне. По сути это означает, что система «Эйдос» обеспечивает восстановление неизвестных значений функции по признакам аргумента и реализует это в универсальной постановке, не зависящей от предметной области. Предлагается новое научное понятие: «Геокогнитивная система», под которым понимается программная система, обеспечивающая преобразование исходных данных в информацию, а ее в знания и картографическую визуализацию этих знаний, в результате чего карта становится когнитивной графикой. Эта возможность может быть использовано для количественной оценки степени пригодности микрозон для выращивания тех или иных культур, оценки экологической обстановки на тех или иных территориях по структуре и интенсивности антропогенной нагрузки, визуализации результатов прогнозирования землетрясений и рисков других нежелательных или чрезвычайных ситуаций, а также для решения многих других подобных по математической сути задач в самых различных предметных областях. Приводится простой численный пример
-
Краткое описание
В статье дается обзор когнитивного моделирования записей AstroDatabank с использованием системы искусственного интеллекта «Эйдос». Обсуждаются наиболее важные результаты и технология моделирования.
-
01.00.00 Физико-математические науки
Краткое описание
Кратко рассматриваются перспективы и некоторые «точки роста» современной теоретической и вычислительной математики, в частности: числа и множества - основа современной математики; математические, прагматические и компьютерные числа; от обычных множеств - к нечетким; теория нечетких множеств и «нечеткое удвоение» математики; о сведении теории нечетких множеств к теории случайных множеств; интервальные числа как частный случай нечетких множеств; развитие интервальной математики (интервальное удвоение математики); система как обобщение множества; системное обобщение математики и задачи, возникающие при этом; системное обобщение операций над множествами (на примере операции объединения булеанов); системное обобщение понятия функции и функциональной зависимости; когнитивные функции; матрицы знаний как нечеткое с расчетной степе-нью истинности отображение системы аргументов на систему значений функции; модификация метода наименьших квадратов при аппроксимации когнитивных функций; развитие идеи системного обобщения математики в области теории информации - системная (эмерджентная) теория информации; информационные меры уровня системности - коэффициенты эмерджентности; прямые и обратные, непосредственные и опосредованные правдоподобные логические рассуждения с расчетной степенью истинности; интеллектуальная система Эйдос-Х++ как инструментарий, реализующий идеи системного нечеткого интервального обобщения математики.